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Abstract— An interactive participant in a live musical per-
formance requires a multitude of senses in order to perform.
These senses include hearing, sight, and touch. Our long-term
goal is to have our adult size humanoid robot Jaemi Hubo
be an interactive participant in a live music ensemble. This
work focuses on Jaemi Hubo’s sense of sight as it pertains
to a musical environment. Jaemi Hubo’s musical awareness
is increased through the use of novel musical tempo and beat
tracking techniques in the absence of auditory cues through the
use of computer vision and digital signal processing methods.
Real time video frames of subjects moving to a regular beat
is recorded using Jaemi Hubo’s video capture device. For each
successive video frame, an optic flow algorithm is implemented
to discern the direction and magnitude of motion. A Fast
Fourier Transform is then applied to obtain the spectral content
of the motion data. Next, a Gaussian weight centered on the
average musical tempo is applied to the normalized spectrum.
The resulting maxima of the weighted spectrum is the tempo
calculated from the video frames. A tempo based dynamic
threshold of the first derivative of the motion data was used to
find the beat location. Experiments using OpenCV, and Matlab
produced accurate tracking of the true tempo and beat timing
in the captured video.

I. INTRODUCTION

“There seems to be an inherent disconnect between
robotics and music” according to Johnathan Strickland, re-
porter for Discovery Communications. The Honda ASIMO
performed with the Detroit Symphony Orchestra in May
2008 at the Power of Dream Music Education Fund initiative

event. The piece played was The Impossible Dream from the
musical Man of La Mancha. ASIMO’s role was to conduct
the entire orchestra. In preparation for the event, ASIMO
studied the movements of Charles Burke, education director
for the Detroit Symphony, while he conducted The Impos-

sible Dream to a pianist. Six months later ASIMO success-
fully conducted the Detroit Symphony Orchestra. Though
the event was impressive “some people might argue that
ASIMO didn’t really direct the Detroit Symphony Orchestra
– rather, Burke did. After all, ASIMO was really recreating
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Burke’s style and movements. The entire routine was simply
a program running on ASIMO’s operating system. The robot
just ran through the series of motions from start to finish,
and would have continued regardless of whether or not the
orchestra followed the robot’s lead.” - Strickland.

Fig. 1. (LEFT) Jaemi Hubo, 130cm tall 41 degree of freedom humanoid
robot, full body view and camera location. (TOP RIGHT) Jaemi Hubo front
head view and camera location. (BOTTOM RIGHT) Inside Jaemi Hubo’s
head and camera location.

This blind autonomy, i.e. lack of world feedback, is a cause
of the inherent disconnect between robots and music. This
is a common problem of robots when faced with creative
human-robot interaction. Traditionally, auditory feedback is
the mechanism of choice for interactive musical robots. The
autonomous dancing humanoid (ADH) robot by DASL1 and
MET-lab2 and the work done by Michalowski et al.[1] with
the Keepon3 are two examples of robotic platforms that
intelligently interact with music [1], [2]. Both the ADH and
Keepon listen to music and track the beat and tempo in real-
time using auditory cues, then dance to the music.

Music that is best tracked from audio in real-time requires
large magnitude changes and a constant beat present in the
music [3]. Consequently pop and other similar musical styles
track well, however, non-percussive melodic music, such as

1DASL: Drexel Autonomous Systems Lab, Drexel University, Philadel-
phia, PA

2MET-lab: Music Entertainment Technology Lab, Drexel University,
Philadelphia, PA

3Created by Hideki Kozima: Creator of Keepon while at the National
Institute of Information and Communications Technology (NICT) in Kyoto,
Japan.
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most orchestral pieces, does not. In orchestral performances a
conductor can keep the beat during periods of absent auditory
cues. One reason humans are able to accurately track the beat
and tempo present in a multitude of different musical styles
is because we can utilize our senses of hearing, sight and
touch to do so. Our overarching goal is to make our adult size
(130cm) humanoid robot Jaemi Hubo (see Fig. 1) musically
aware and have it become an interactive participant in a live
human ensemble. Bringing our goal to fruition means that
all senses must be utilized.

This work focuses on Jaemi’s sense of sight as it pertains
to a musical environment. A novel approach to tempo and
beat tracking in the absence of auditory cues through the use
of computer vision and digital signal processing methods is
used to give Jaemi Hubo an additional component (sight) to
musical awareness. The approach is called visual beat track-
ing (VBT). Experiments showed that when equipped with
the VBT Jaemi Hubo is able to accurately track the beat and
tempo when watching a trained musician conduct to a steady
tempo with its on board camera, see Fig. 1. Experiments were
performed at multiple measure timings/meters. Fig. 2 shows
the conducting pattern for the different timings/meters.

Fig. 2. Diagram of conducting timings/meters used. For each different
timing the conductors hand follows the arrow. The conductors hand will be
where the number is located at the beginning of each beat. The conductors
hand starts at the beginning of the arrow at the beginning of each measure.

II. RELATED WORK

Using the sense of sight to perceive the ictus4 (instant at
which the beat occurs) has been shown to be effective. Park et
al. [4] demonstrated vision system that is able to estimate the
period of an unstructured beat gesture expressed in any part
of the viewable scene. This system used the Lucas-Kanade
algorithm [5] to calculate the optical flow. This locates the
regions in the scene (between two consecutive frames) that
contain relative movement. The trajectory of the center of
gravity of the optical flow was used to influence the sound of
a piano by actuating robotic fingers. Crick et al. [6] created a
system that allowed the humanoid robot Nico to play a drum
in concert with human drummers. Color target tracking was
used to track the conductor’s hand. Nico used both sight and

4Ictus: “bottom” of the beat gesture where it changes vertical direction

sound to enable precise synchronization in performing its
task.

The Lucas-Kanade algorithm used by Park et al. to cal-
culate the optical flow requires a high contrast subject to be
tracked limiting its effectiveness in a live human band. The
Nico system is limited because it uses a simple threshold on
only the versicle position of the conductor’s hand. Crick et
al. states that their system is only affective when the gestures
are smooth and regular. The VBT presented in this work does
not contain these limitations due to the robust and dynamic
methods used to calculate the tempo and ictus.

III. METHODOLOGY

Our objective is to calculate the tempo and beat timing
(ictus) directly from Jaemi Hubo’s single camera live video
feed. From musical conducting or rhythmic action the tempo
and beat timing can be calculated by examining the spectral
content of the mean magnitude and angle of motion in a
given scene MN (across two or more frames). To calculate
MN a real-time video feed (gray scale - intensity) must be
captured. Each frame in the video is equalized to compensate
for different lighting conditions. The size of the image is
reduced to allow for faster computation time. The computer
vision (CV) Horn-Schunck Optical Flow method is used to
calculate the relative motion between the current frame and
the previous frame [7][8]. The mean magnitude and angle
moved between the two frames (MN ) is then calculated. The
vector VN containing the past Nfft values of MN is created,
where Nfft is the length of the forthcoming fast Fourier
transform (FFT). The spectral content of VN is calculated
via the use of the FFT creating SVN

. To reduce the effects of
harmonics a triangle piecewise weight is applied to SVN

with
the mean tempo for popular music as calculated by Moelants
[9] receiving the greatest weight. The tempo corresponding
to the location of the highest peak in the weighted SVN

is
the tempo contained in the captured video. The tempo is
normally measured in beats per minute (BPM).

The beat timing (location of each beat or ictus) is calcu-
lated by examining the first derivative of the mean angle be-
tween the current and the previous frame. The time instance
where the resulting value becomes less than the dynamic beat
marking threshold (DBMT or Bc

N ) marks the beginning of
the beat. Bc

N is a function of the current calculated tempo
that increases the probability that the beat will be detected at
the next ictus by decreasing its magnitude as the likelihood
of the next ictus increases.

The block diagram of the process to calculate the beat
timing and the tempo contained in the captured video can be
found in Fig. 3.

A. Movement Extraction

The Horn-Schunck optical flow algorithm is used to find
the direction and magnitude of motion in each frame set
IN and IN−1[7]. The Horn-Schunck algorithm calculates the
flow velocity (u, v) of each point in the frame set.

dE

dt
= Exu+ Eyv + Et = 0 (1)
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Fig. 3. Video taken from a real-time feed. Each frame is equalized to compensate for different lighting conditions. Current image IN is resized (reduced
in size) to allow for faster computation time. The optical flow is taken between the current frame IN and the previous frame IN−1. The resulting data
consists of the magnitude and angle the each pixel moved from IN−1 to IN . The magnitude and angle is averaged over the entire image resulting in
a mean magnitude and angle moved for the image set IN and IN−1. This is referred to as the movement data. The FFT of the past M values of the
movement data is calculated. A weighted filter is placed over the FFT spectrum to give higher weight to the most common tempos[9]. The maxima of the
FFT spectrum correlates to the overall tempo present in the video.

where

u = dx
dt and v = dy

dt
(2)

E(x, y, t) denotes the image brightness at point (x, y) in
the image plane at time t. Ex, Ey and Et are the partial
derivatives for the image brightness in respect to x, y, and
t respectively. The constraints on the flow velocity can now
be defined as:

(Ex, Ey) · (u, v) = −Et (3)

Running in discrete (frame by frame) time, our annota-
tion and calculations must be modified. Let Ej,k,N be the
brightness of the pixel located on the jth row, kth column
on the N th image. j spans from 0 to the width of the image
frame. k spans from 0 to the height of the image frame. The
top left corner is the origin (0, 0). The bottom right corner
is the max width and height (jmax, kmax). Horn et al.[7]
determined that Ex, Ey , and Et can be estimated by:

Ex ≈ 1

4
(Ej,k+1,N − Ej,k,N +

Ej+1,k+1,N − Ej+1,k,N +

Ej,k+1,N+1 − Ej,k,N+1 +

Ej+1,k+1,N+1 − Ej+1,k,N+1) (4)

Ey ≈ 1

4
(Ej+1,k,N − Ej,k,N +

Ej+1,k+1,N − Ej,k+1,N +

Ej+1,k,N+1 − Ej,k,N+1 +

Ej+1,k+1,N+1 − Ej,k+1,N+1) (5)

Et ≈ 1

4
(Ej,k,N+1 − Ej,k,N +

Ej+1,k,N+1 − Ej+1,k,N +

Ej,k+1,N+1 − Ej,k+1,N +

Ej+1,k+1,N+1 − Ej+1,k+1,N ) (6)

The non-thresholding methods used by the Horn-Schunck
optical flow algorithm allows the system to be more tolerant

of low contrast and poor lighting conditions when compared
to other optical flow algorithms.

B. Tempo Extraction

The tempo can be extracted by finding the maximum peak
in the FFT spectra vector SVN

for the mean motion data
vector VN where:

SVN
= FFT(VN ) (7)

The peak will only be calculated for index values from 0
to Nfft

2 where Nfft is the FFT length. The tempo of the
peak xp is calculated using the index value of the peak ip
and Eq. 8.

The tempo xi can be calculated in beats per minute (BPM)
for any index point i from the FFT using:

xi =
60 · i · fps

Nfft
(8)

Where i = FFT index point and fps = Frames Per Second
of the video feed. Fig. 4 shows the plot of SVN

vs. xi where
fps = 29.97, Nfft = 256, and N = 500. The index point
of the maximum value of Fig. 4 ip is found by finding the
maxima of the vector SVN

and the corresponding index point.
Eq. 8 and ip are used to calculate the tempo xT in the video
feed:

tempo = xT =
60 · ip · fps

Nfft
(9)

SVN
can contain non-tempo related frequencies due to

harmonics or other visual stimuli. Applying a piecewise
tempo weight TW to SVN

reduces the effects of the non-
tempo related frequencies. SW

VN
is the weighted SVN

vector
and is described in Section III-C. SW

VN
can be used as a direct

replacement for SVN
when the tempo weight is needed.

C. Tempo Weight

To reduce the effects of harmonics and to ensure the
location of the highest peak in SVN

depicts the correct tempo
a weight is applied. The each value of the weight vector
Tw is different for each discrete tempo value. Tw has the
same length as SVN

. Tw is a triangular piecewise weight that
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Fig. 4. Trained musician conducting in 4/4 time at 120 BPM. Plot of
SVN

vs. xi and SW
VN

vs. xi where fps = 29.97, Nfft = 256, and
N = 500. The index point of the maximum value of ip = 18. The video
feed is from a trained musician conducting in 4/4 time at 120 BPM. The
tempo is calculated from Eq. 8 where i = ip. The tempo calculated is
xip = xp = xT = 119.4 BPM, 0.5% diference from the true tempo 120
BPM.

peaks at the mean tempo Tm of popular music. D. Moelants
calculated Tm ≈ 128BPM [9]. Tw is calculated by:

Twi
(xi) =

⎧⎪⎪⎨
⎪⎪⎩

m · xi + b1 if xi ≤ Tm

−m · (xi − Tm) + b2 if Tm < xi ≤ 2Tm

b1 if 2Tm < xi ≤ xNfft/2

0 else
(10)

where i is the index corresponding to xi defined in Eq. 8.
i is all integer values from 0 to (Nfft − 1).

Tw = [Tw0(x0), Tw1(x1), · · · , TwNfft−1
(xNfft−1)] (11)

and

m = Kmax −Kmin (12)

b1 = Kmin (13)

b2 = (2− Tm) ·Kmin + (1 + Tm) ·Kmax (14)

Where Kmin and Kmax are the minimum and maximum
desired gain values for Twi .

The plot of Tw for multiple tempos xi is shown in Fig. 5.
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Fig. 5. Tempo weight Tw reduces the effects of non-tempo related spectral
peaks in SVN

. Tw is defined in Eq. 10.

The weighted spectrum SW
VN

is calculated by:

SW
VN

= SVN
◦ Tw (15)

Where ◦ is the element by element product operator. Fig. 4
shows SVN

and SW
VN

plotted vs. xi

D. Beat Timing Extraction

The beat timing (ictus) is extracted by examining the first
derivative (discrete) between MA

N and MA
N−1, denoted by

MA
t :

MA
t (N) =

MA
N

fps
− MA

N−1

fps
(16)

Where MA
N and MA

N−1 is the mean angle moved at time
point N and N − 1 respectively.

The beginning of the beat occurs when there is a sharp
negative peak in MA

t . The beat is marked according to
Eq. 17.

BN =

{
1 if MA

t ≤ Bc
N

0 else (17)

where the rising edge of 1 represents the beginning of the
beat (ictus) and 0 represents no beat. Bc

N is the dynamic
beat marking threshold (DBMT) at discrete time N . Bc

N is
a sliding window that averages over ≈ Kb · 100% the length
of one beat.

Bc
N =

−Kbw

Nb

m=N∑
m=N−Nbw

|MA
t (m)| (18)

where Nb is Nbw less than the number of samples between
two beats (rounded down to the nearest integer). Kbw is a
user defined static positive gain.

Nbw = floor(Kb ·Nb) (19)

Kb is the fraction of Nb that is used for averaging. To
average over the time span of less than one beat 0 < Kb < 1.
Nb is the number of samples between two beats.

Nb =
60 · fps

xT
(20)

where xT is calculated in Eq. 9.

IV. EXPERIMENT & RESULTS

The capabilities of the vision beat tracker (VBT) were
tested using two variables, the measure timing/metering and
FFT length Nfft. The conducting tempo stayed constant
at 120 BPM for all test. The FFT length was tested at
Nfft = 128 and Nfft = 256. The measure timing/metering
was tested at 4/4, 3/4, 2/4, and 1/4. Fig. 2 shows conducting
pattern for the different timings. The accuracy of the calcu-
lated tempo xp and the settling time for each permutation
was calculated.

Note: for all tests a trained musician conducted in the
specified meter to a metronome playing at 120 BPM. On
each beat the metronome would play a tick sound. The audio
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and video feed were saved to allow for timing comparison.
The tick sound of the metronome is the benchmark tempo
and beat timing. No other sounds are present in the bench
mark videos.
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Fig. 7. The video feed is from a trained musician conducting in 4/4 time
at 120 BPM. The tempo is calculated from Eq. 8 where i = ip. The tempo
calculated is xip = xp = 119.4 BPM. (TOP) MA

N vs time: Mean direction
objects in the frame moved from IN−1 to IN . (MIDDLE) MA

t and Bc
N

vs. time: First derivative (discrete) of between MA
N and MA

N−1. Bc
N is

the beat cut threshold. The start of the beat is when MA
t falls below Bc

N .
(BOTTOM) BN vs time: The rising edge of BN denotes the start of the
next beat. BN is calculated using Eq. 17. Note fps = 29.97, Nfft = 256,
and i = 18.

A. Tempo Extraction Results

Table I and Fig. 8 contain the calculated xT and settling
times respectively for all metering and Nfft = 256. Table II
and Fig. 9 contain the calculated xT and settling times
respectively for all metering and Nfft = 128.

It was found that the xT calculated by the VBT had
a smaller error with Nfft = 256 but a slower rise time
when compared to Nfft = 128. The greater accuracy when
Nfft = 256 is attributed to a smaller bin sizes for the
calculated tempos. The faster rise time when Nfft = 128
is attributed to the system only reaching 5% acuracy as
compaired to 0.5% acuracy.

B. Beat Timing Extraction Results

Fig. 7 shows MA
N , MA

t , Bc
N , and BN vs. time with fps =

29.97, Nfft = 256, and i = 18. The video feed is from a

TABLE I
TEMPO ACCURACY AND SETTLING TIME FOR xT VS. time, SEE FIG. 8.

Nfft = 256, fps = 29.97, CONDUCTING TEMPO = 120 BPM

Meter xT (BPM) Settling Time (sec)
4/4 119.41 BPM 1.60 sec
3/4 119.41 BPM 3.70 sec
2/4 119.41 BPM 4.04 sec
1/4 119.41 BPM 2.77 sec
- average 3.03 sec

TABLE II
TEMPO ACCURACY AND SETTLING TIME FOR xT VS. time, SEE FIG. 9.

Nfft = 128, fps = 29.97, CONDUCTING TEMPO = 120 BPM

Meter xT (BPM) Settling Time (sec)
4/4 112.39 BPM 0.87 sec
3/4 112.39 BPM 0.97 sec
2/4 126.44 BPM 1.44 sec
1/4 126.44 BPM 1.27 sec
- average 1.14 sec

trained musician conducting in 4/4 time at 120 BPM. The
tempo is calculated from Eq. 8 where i = ip. The tempo
calculated is xip = xp = 119.4 BPM. It is important to note
how Bc

N is more likely to be crossed the longer a beat has
not been registered.

The VBT system placed a black circle in the upper left
hand corner of the video feed on the frame that it detected
the start of a beat, see Fig. 6. This black circle was used
in the measurement of the accuracy of the system. The
time between the beginning of the beat marked by the
metronome’s tick was measured and recorded.

Table III contains the time between the start of the beat
and the marked beat for the different measure timings with
Nfft = 128. Table IV contains the time between the start
of the beat and the marked beat for the different measure
timings with Nfft = 256.

There was little difference in the performance between the
VBT with Nfft = 128 and Nfft = 256. On average there
was a delay of 75ms between the start of a beat and the
beat marker. This is equivalent to a 2-3 frame delay. Thus
resulting in a delay of approximately 100ms at fps = 29.97,
or a delay of approximately 50ms with fps = 60fps.
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Fig. 8. Trained musician conducting at 120 BPM in multiple tim-
ings/meters. Plot of xi vs. time where fps = 29.97 and Nfft = 256.
The average settling time for xT is 3.03 sec.
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Fig. 6. Trained musician conducting at 120 BPM in 4/4 time. Nfft = 128, fps = 29.97. Displays the video feed (top) and the given audio (bottom).
A metronome is playing a tick at 120 BPM and shows up in the audio display. No other audio is present in the video feed. A black dot shows up in the
upper left hand corner of the frame when the VBT registers a beat. There is a 2-3 frame delay between beat activation and beat recognition.
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Fig. 9. Trained musician conducting at 120 BPM in multiple tim-
ings/meters. Plot of xi vs. time where fps = 29.97 and Nfft = 128.
The average settling time for xT is 1.14 sec.

TABLE III
BEAT TIMING WHERE THE OFFSET IS THE AMOUNT OF TIME BETWEEN

WHEN THE BEAT OCCURRED AND THE VBT MARKED IT. Nfft = 128,
fps = 29.97, CONDUCTING TEMPO = 120 BPM. NOTE: ≈ 0.033 sec

frame

Meter Frame Delay (frame) Beat Offset (sec) Total Delay (sec)
4/4 2 0.003 sec 0.069 sec
3/4 2 -0.007 sec 0.059 sec
2/4 2 0.017 sec 0.083 sec
1/4 2 0.023 sec 0.089 sec
- - average 0.075 sec

V. CONCLUSION & FUTURE WORK

With the use of the visual beat tracker (VBT), Jaemi Hubo
has the ability to calculate the timing for a musical beat in
0.075 seconds and estimate the tempo in 4.0 seconds. The
use of the Horn-Schunck optical flow algorithm allows the
VBT to function in unstructured real-world environments.
The dynamic beat marking threshold (DBMT) allowed the
beat/ictus tracker to be unaffected by irregular conducting
directions.

Jaemi Hubo now has one of the three senses (hearing,
sight, and touch) required to achieve our overarching goal of
creating a robot capable of being an interactive participant in
a live ensemble. Jaemi’s sense of sight gives it key informa-
tion about a musical environment: tempo and ictus. The next
step is to combine the audio beat tracker from Ellenberg’s
ADH system [2] with the VBT. As a result Jaemi will be
able to follow the beat through visual and auditory cues.
The addition of tactile and sensory multiplexing systems will
close Jaemi Hubo’s interactive participant gap and allow us
to achieve our ultimate goal: having our adult size humanoid

TABLE IV
BEAT TIMING WHERE THE OFFSET IS THE AMOUNT OF TIME BETWEEN

WHEN THE BEAT OCCURRED AND THE VBT MARKED IT. Nfft = 256,
fps = 29.97, CONDUCTING TEMPO = 120 BPM. NOTE: ≈ 0.033 sec

frame

Meter Frame Delay (frame) Beat Offset (sec) Total Delay (sec)
4/4 2 0.007 sec 0.073 sec
3/4 2 0.030 sec 0.096 sec
2/4 1 0.009 sec 0.042 sec
1/4 2 0.022 sec 0.088 sec
- - average 0.075 sec

robot Jaemi Hubo be an interactive participant in a live music
ensemble.
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