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Abstract
Segmentation of 3D human body is a very challenging 

problem in applications exploiting human scan data. To 

tackle this problem, this paper proposes a topological 

approach based on the Discrete Reeb Graph (DRG) 

which is an extension of the classical Reeb Graph to  

handle unorganized clouds of 3D  points. The essence of 

the approach concerns detecting critical nodes in the 

DRG thereby permitting the extraction of branches that 

represent parts of the body. Because the human body 

shape representation is built upon global topological   

features that are  preserved so long as the whole 

structure of human body does not change, our approach 

is quite robust against noise, holes, irregular sampling, 

frame change and posture variation. Experimental results 

performed on real scan data demonstrate the validity of 

our method. 
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1. Introduction and previous work 

The recent years have seen the emergence of 3D imaging 

technology that enables full scanning of the HB surface 

with reasonable measurement accuracy and acceptable 

computational cost. This advance facilitates the 

exploitation of the HB form in various areas such as 

anthropometrical research [1,2], clothing design [3,4]  

and virtual human animation [5]. Although the raw data 

delivered by the HB scanner requires substantial main 

memory and backing store resources, this data contains 

little semantic information. For the effective and efficient 

use of body scan data, it is usually necessary to partition 

the whole scan data set into subsets corresponding to the 

different principal body parts. This segmentation provides 

the basis for a high-level representation of the scan data 

and is a prerequisite for further semantic analysis. 

For example, in medical applications, the segmentation 

process provides an atlas for extracting data belonging to 

limbs that can be used to guide further analysis such as 

fitting generic limb models. These models can then be 

used to automate specific clinical protocols, such as 

spinal curvature assessment. Automatic segmentation of 

HB data is  a challenging problem firstly because the 

body shape is both articulated and deformable and 

secondly because the scan data by nature is non-

uniformly sampled, often containing gaps and corrupted 

by measurement noise. 

The automatic segmentation of the HB scan data into the 

functional parts was pioneered by Nurre [6]. He 

approximated the body structure by a stick-template 

representing the head, the two arms, the two legs and the 

torso. His goal was to segment the body into six segments 

corresponding to these parts. This approach combines a 

global shape description, namely moments analysis, and 

local criteria of proximity which are derived from a priori 

knowledge of the relative positions of the body parts in 

the standard posture (standing body with arms held at the 

sides). The range data is organized into slices of data 

points. The horizontal slices are stacked vertically and the 

data points are assigned to the different body parts 

according to the slice's topology and its position in the 

body, e.g. a slice having two separated closed curves 

must represent data points measured at the level of the 

legs. A slice consisting of three closed curves must 

belong to the torso and arms area, a slice with two joined 

closed curves is assumed to correspond to the transition 

between the legs and the torso (at the level of the groin). 

Certainly this work illustrated a considerable progress 

towards the automatic decomposition of the HB data, 

however the approach is restricted to a strict standard 

posture and did not show evidence of robustness with 

respect to noise, gaps in the data, and variation in the 

shape and the posture of the HB. Using the framework of 

Nurre, Ju et al [7] refined the segmentation approach by 

introducing curvature analysis of profiles extracted from 

the slices to allow further decomposition of the body 

limbs into their articulated segments.  Decker and Douros 

et al [8,9] advanced Nurre's work by improving the 

localization of the key landmarks of the HB. For instance, 

they differentiated the slice circumferences in the torso 

area to locate the waist position. However their approach 

had the same limitations of Nurre's approach [6]. 

Recently, Wang et al [10] proposed an approach 

developed within a Fuzzy logic framework. As with 

Nurre's approach, a strict standing posture is assumed. 

After many preparation stages, the data is meshed and a 
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segmentation technique applied that involves local 

curvature analysis of the slice data. However the overall 

performance of this approach remains identical to that of 

Nurre's. 

In conclusion, the approaches developed to date are 

restricted by their underlying assumptions and may well 

suffer from instability when applied to real applications 

that must process noisy and corrupted 3D HB scan data 

containing posture variations. Furthermore, no evidence 

of the repeatability of these previous algorithms has been 

reported in the literature. For a HB data segmentation to 

be of practical utility, it must be robust to the variations of 

the body surface shape stemming from biological factors 

such as age, genetics, etc.  It must also cope with 

reasonable perturbations in body posture. Adhoc

techniques cannot satisfy these requirements, although 

they might work for a particular case.  This paper 

proposes an approach defined within a general 

topological analysis framework. A systematic way to 

segment HB body data is presented that can cope with 

body shape variations and moderate posture changes. The 

approach does not require any pre-processing stages, 

operates on raw 3D point-cloud data and does not involve 

local feature analysis, which would be vulnerable to 

deficiencies in the scan data. 

The rest of the paper is organized as follows:  Section 2 

describes the theoretical  foundation of the approach and 

its relation with Morse theory and the Reed Graph.  

Section 3 describes the segmentation algorithm.  The 

experiments and their results are presented in Section 4. 

The paper concludes in section 5 with a discussion of the 

results and future work. 

2. Morse Theory and Reeb Graph 

        Morse theory can be thought of a as a generalization 

of the classical theory of critical points (maxima, minima 

and saddle points) of smooth functions on Euclidean 

spaces. Morse theory states that for a generic function 

defined on a closed compact manifold (e.g. a closed 

surface)) the nature of its critical points determines the 

topology of the manifold.  Morse functions are generic 

functions for which all the critical points are non-

degenerate (the Hessian matrix of the function at the 

critical point is non singular).  For a Morse function, the 

critical points determine the homology groups of the 

manifold, that is a sets of points for which the function is 

less than a given value x.  Moreover these sets can fully

describe the topology of the manifold.  The way the 

manifold is embedded in the 3D space can be coded using 

the Reeb graph which is a skeleton graph that encodes the 

evolution and the arrangement of the homology groups. 

Reeb graph represents the configuration of critical points 

and their relationship and provides a way to understand 

the intrinsic topological structure of a shape.   

Consequently, the Reeb graph has been used in many 

applications such as shape matching [11], shape coding 

[12] and surface description and  compression [13, 14]. A 

Reeb graph is defined as follows: 

Definition 1 (Reeb graph): Let f be a real-valued function 

on a compact manifold M.  The Reeb graph of a function f 

is the quotient space of the graph of   f in M  by the 

equivalence relation “~”, given by: 

(X1 , f(X1 )) ~ (X2 , f(X2 ))  iff f(X1 ) = f(X2 ) and X1 and 

X2 are in the same connected  component of  ( ))( 1

1 xff −  

Roughly speaking, the two points (X1, f(X1)) and (X2 

,f(X2 )) are represented as the same element in the Reeb 

graph if the values of f are the same and if they belong to 

the same connected component of the inverse image of 

f(X1 ) (or f(X2 )). Actually one element in the Reeb graph 

of a compact manifold represents all points having the 

same value under a real function. Figure. 1 illustrates an 

example of Reeb graph for a torus (a). The critical points 

associated to the chosen ‘height’ function are depicted. 

The corresponding Reeb graph is shown in (b) where 

triangular nodes denote local extremal points and square 

nodes denote saddle points. 

(a) (b)

Figure 1:  Reeb Graph of a Torus 

By applying Reeb Graph to a human figure, we can get a 

skeletal representation as illustrated in Figure 2, where   

the height function is adopted.  It can be seen that the 

critical points have important meanings on the skeletal 

figure.  Extremal points represent head top, hand tips and 

foot toes. Saddle points represent armpits and groin. 

Moreover, the branches in the graph reflect the body parts 

of the figure, i.e., arms, legs, torso and head.  Therefore, 

if we collect the level-set curves in these branches, we 

can obtain the data corresponding approximately to the 

body parts of the human figure. This is the key idea 

behind our proposed approach. 

2.1 Discrete Reeb Graph 
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The classical Morse theory is concerned with only non-

degenerate critical points of smooth functions (Morse 

function) on smooth manifolds. In practice, our data 

format does not comply with this restrict assumption, as it 

consists of points sampled on the measured human body 

surface, and it might be corrupted by noise and gaps.  The 

construction of the Reeb-Graph for such data, is inspired 

from the approach of Biasotti et al [13,14] who proposed 

an Extended Reeb Graph which can be extracted from a 

discrete surface, where the data is described by a set of 

unorganized  polygonal contours.  In our case the data is 

an unorganized cloud of 3D data points.  We call the 

Reeb graph extracted from such data the Discrete Reeb 

Graph (DRG). 

Figure.2: Reeb graph of a human figure. 

The extraction is based on the notion of connectivity 

described in the following definitions: 

Definition 2  (connectivity of point sets): 

Two point sets P ={ pi }, i=1..m  and Q = {qj},  j=1..n  

are defined as connected iff 

dqpthatsuchQqandPp jiji ≤−∈∈∃ Where 

ji qp − means the distance between points 
ip and

jq

and d is a threshold that denotes the maximum distance 

between a couple of ‘connected’ points.  The above 

definition covers also the connectivity between two points 

for the particular case where  the sets  P and Q each 

contain a single point. 

Definition 3 (connective point set): 

A point set C is connective iff  

connectedareandandC ΩΩ≠Ω⊂Ω∀ ,φ ,

where Ω is the  complement set of Ω in  C, and φ
denotes the  empty set. 

Based on the above definitions the DRG is built on the 

discrete set of points according to the following steps: 

Step1: Establishing level-set curves

For a continuous surface, a level-set curve is the 

intersection between a plane with a certain height and the 

surface. Due to the discrete nature of the data (point 

samples), we extract data in a slice with a height in the 

domain ],[ dhh + , where h is a height value and d is the 

slice thickness. By choosing an appropriate value of d,

each slice will contain a sufficient number of data points 

for analysis. The data is sliced from bottom to top. In total 

there are )/( minmax dhhceil −  slices. Here )(⋅ceil  represents 

the nearest integer towards positive infinity and
maxh ,

minh

denote the maximum and minimum height value of the 

data. For each slice, data points are grouped into several 

discrete connective sets consisting of connected data 

points based on the definition of connectivity above.  

These groups which we call discrete curves represent the 

level-set curves in the DRG. 

Step2: Building the connectivity graph

Considering each curve as a node in the graph, two nodes 

in two adjacent slices respectively are linked if their 

corresponding curves are connected. In this way, we can 

build up a graph containing all nodes and their links, i.e., 

DRG.

Note

In the DRG, critical points might degenerate into ‘critical 

curves’. In other word, we might not discover the exact 

critical points due to the discreteness of data and slicing 

process, instead these points appear to be critical curves  

around which the topology of human body varies. 

Fortunately, our application does not deal with the 

theories based on non-generate critical points that many 

other applications involve. Therefore we do not 

distinguish critical points and critical curves in our 

application, and generally we title them ‘critical nodes’ in 

the DRG.

3  Segmentation Algorithm 

      Before presenting the details of the segmentation 

algorithm, we describe our problem in a precise manner. 

First of all, the subject of our study is a general human 

figure. The HB data can be acquired by a general 3D 

scanner that is not constrained by specific specification 

requirements. The data is corrupted with noise, holes and 

gaps. Moreover, the human figure stands in the measuring 

platform with arms held at the sides and legs separated. 

Therefore the height direction of the measured figure is 

known. In order to segment scan data according to DRG, 

we need firstly to extract critical nodes in the DRG, and 

then locate branches representing body parts, finally we 

retrieve the data points corresponding to the branches. 

Finding critical nodes in the classical Reeb Graph is very 

intuitive. The root and leave nodes represents local 

extremal points. The branched nodes represent saddle 

points. However, it is nontrivial to extract critical nodes 

in DRG, because the noise and holes in the data might 
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change the local topological properties of the scan data 

and create ‘false’ critical nodes.  In order to detect the 

‘true’ critical nodes, we assume that the effects of noise 

and holes on the topology are bounded. Thus, we can use 

the following criteria to identify ‘true’ critical nodes 

• A ‘true’ saddle node has at least two ‘true’ 

branches all of which are longer than a threshold 

length. 

• ‘True’ extremal nodes are the deepest leaves of 

‘true’ branches. 

The segmentation algorithm is based on the analysis of 

the DRG and the above criteria. The algorithm contains 

only one pass searching from the bottom to the top of 

data. In this pass, the critical nodes representing foot toes, 

groin, hand tips, armpits and head top are detected using 

the criteria mentioned above and the ‘true’ branches 

between these critical nodes are extracted. Then the 

identification of branches corresponding to the body parts 

becomes very simple. The branches between groin and 

foot toes correspond to legs. The branches between 

armpits and hand tips correspond to arms. The rest of the 

data correspond to torso and head. The algorithm for 

building the DRG and finding the ‘true’ saddle nodes and 

branches is described by the following pseudo-code

Notation:

Node – A node is an entity which contains a curve in a 

slice.

NewNode() – A function to allocate a new node 

Class – A class is defined as a group of connected nodes.  

Class(Node) – The Class containing the Node.

NewClass() – A function to allocate a new class 

Num(Class) – The number of nodes in the class

Threshold – A number used in our criterion for detection 

of ‘true’ branches.

Branch – The ‘true’ branch connected to a ‘true’ saddle 

node.

Code:

Slicing from bottom to top 

For each slice 

    Group data points into curves 

For each curve 

node:=NewNode()

         If it is the 1-st slice 

Class(node) := NewClass()

Else

             Determine the nodes },,,{ 21 mNNN  in last  

              slice connected to the node

   If m = 0 

       Class(node) := NewClass()

   Else

        
)}(

)()({: 21

mNClass

NClassNClassC

∪
∪∪=

                    Pick up the classes such that

)}(,,,2,1:)(|{ mnniThresholdCNumC ii ≤=≤
If 2≥n

For each 
iC

ij CBranch =:  , 1: += jj

Remove 
iC

End for 

Else

Class(node) := },,{ 21 mNNN ∪∪∪
End if 

      End if 

            End if 

        End for 

    End for 

To simplify the curve grouping process in the above 

algorithm, we partition regularly the space of a slice into 

cubes each with the size of ddd ×× .  If there are data 

points inside a cube, this cube is labeled as ‘1’, otherwise 

labeled as ‘0’ (Fig.3). We can process these cubes 

according to their index in the same manner as a binary 

2D image. Finding connected component in an image has 

been well examined in the literature. We choose a 

standard technique mentioned in [15](Chapter 2) to 

achieve this task.
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Figure 3 Finding connected curves in a slice 

4. Experiments 
The validity of our method was tested through 

experiments conducted on real data samples. The first 

group of samples was downloaded from Cyberware 

website [16]. The samples, acquired from Cyberware 

whole body 3D scanner-WB4, include two female and 

two male subjects. Each sample contains about 12,000 

data points. Figure 4 shows the pictures of the subjects 

and the segmentation results of their 3D scan data. It can 

be noticed that the body joints at the level of the armpits 

and the groin were detected quite faithfully, and the 
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segmented parts of the data correspond reasonably to the 

arms and legs.   

            (a)                      (b)                  (c)            (d)| 

Figure 4: Segmentation of the Cyberware samples

It is also worth noting that the results were obtained using 

low quality scan data, as illustrated in Figure 5 which 

shows a zoomed area around the groin in Figure 4(a).  

The non-regular sampling of the data and the presence of 

gaps and holes can be observed.  Hence, the algorithm 

appears to be robust to the above data corruption models. 

Figure 5:   Zoomed image illustrating the distribution of 

the scan data. 

The choice of the height function used in the construction 

of the DRG assumes that the principal orientation of the 

body is collinear to the z axis of the coordinate frame. 

However this assumption might not hold due to many 

reasons such as the presence of a systematic error in the 

scan data or variations in the body standing pose. The 

effects of violating the z axis colinearity assumption were 

simulated by perturbing the coordinate frame orientations. 

This was implemented by rotating the coordinate frame 

around its x and y axes. To check the robustness of the 

algorithm, the perturbation was pushed to an extreme case 

by setting the angle of rotation to 30o   and -30o (Figure.6 

(a)). The experiments were carried out on the body scan 

data of Figure 4(a) and the results are are displayed in 

Figure 6. The figure shows that the algorithm still 

produces a segmentation faithful to the body anatomy.  

However, the segmentation near the groin and the armpits 

is of reduced accuracy due to the difference between the 

slicing orientation and principal orientation of the body. 

Nevertheless these results indicate that the algorithm can 

cope (to a reasonable extent) with uncertainty in  the 

principal   orientation of the body. 

        (a )                             (b)                  (c)             (d) 

Figure 6:  Segmentation results obtained from perturbed data. 

(a) and (b) data rotated around the y axis by 30o and –30o

respectively. (c) and (d) data rotated around the x axis by 30o

and –30o respectively.

The second group of experiments was performed on 

human body scans acquired from 3D human body scanner 

at the EDVEC center [16].  This scanner uses Moire

fringe based 3D imaging technology, and is thus quite 

different from the Cyberware scanner which uses Laser 

technology. The scans are related to one subject in three 

different postures (Figure 7(a)). Each scan contains about 

11,000 data points. The algorithm worked in a 

satisfactory way resulting in a reasonably accurate 

segmentation for the three postures (Figure 7(b)). 

5. Conclusion 
This paper presents a new approach, based on topological 

analysis, for segmenting human body data scans.  The 

approach extends the Reeb graph framework to the case 

of unorganized cloud of data points by defining and 

utilizing connectivity concepts. The approach can handle 

directly raw scan data without the need for any pre-

processing or pre-formatting of the data. The 

segmentation proved to be robust against noise, gaps and 

irregular sampling and has no dependency on the 

specifications of the scanners. The performance of the 

algorithm was confirmed by experiments carried out with 

real scan data, acquired from different sources and related 

to a variety of human figures and postures. All the figures 

were successfully segmented into five parts without any 

manual intervention.   To the best of our knowledge this 
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work is the first to present a reliable and repeatable 

approach for segmenting 3D Human body scans.  

               (a) 

(b)

Figure 7: Three body postures (a) and their related 

segmented scans 

Currently, the range of variation we allow in body posture 

is limited. Accordingly, we are investigating an extension 

to the presented algorithm to enable it to cater for a 

greater variety of body poses. This work is based on the 

concept of building multiple and complementary Reeb-

Graphs constructed using appropriate generic functions. 

The analysis of each graph would then be combined to 

produce a single robust segmentation.
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