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Abstract

Proximity-based, or pairwise, data clustering techniques
are gaining increasing popularity due to their versatility
and their ability to easily integrate information of different
nature. Despite this, most applications to image segmen-
tation incorporate only region-based information, mainly
color and texture similarity. In this paper we propose a
general approach for integrating boundary information in a
pairwise segmentation framework. To this end we propose
a measure of distance between pair of pixels that integrates
the value of an edge-response function along a path joining
the two pixels. Experiments performed using the dominant
sets framework show that the proposed approach is com-
petitive with the state of the art pairwise segmentation al-
gorithms even while using boundary information only. Fur-
thermore, we show that the approach can effectively be used
when adopting an out of sample approach to pairwise seg-
mentation.

1. Introduction

Proximity-based, or pairwise, data clustering techniques
are gaining increasing popularity over traditional central
grouping techniques, which are centered around the notion
of “feature” (see, e.g., [6, 12, 13, 11]). In many application
domains, in fact, the objects to be clustered are not natu-
rally representable in terms of a vector of features. On the
other hand, quite often it is possible to obtain a measure of
the similarity/dissimilarity between objects. Although such
a representation lacks geometric notions such as scatter and
centroid, it is attractive as no feature selection is required
and it keeps the algorithm generic and independent from the
actual data representation and metric involved. This means
that similarity information arising from sources of very dif-
ferent nature can be incorporated very easily, often not re-
quiring more than adding together distances or multiplying
similarities calculated from different sources. In contrast,
integrating information of different nature within the central
clustering framework requires and integrated feature model

capable of simultaneously characterizing all information at
the feature level. Moreover, pairwise approaches allow one
to use non-metric similarities, are applicable to problems
that do not have a natural embedding to a uniform feature
space, such as the grouping of structural or graph-based rep-
resentations, and their clustering criteria are intrinsically of
a global nature, while feature-based grouping tends to be
more “local” in nature.

These approaches have proven very powerful when ap-
plied to image segmentation problems [13, 7, 6, 4]. Here,
the possibility of easily integrating different sources of in-
formation has been used to incorporate color, texture, and
proximity information between pair of pixels. Conversely,
feature based segmentation algorithms must explicitly in-
tegrate all types of information into a single geometrical
model which requires a stronger characterization of the ge-
ometry of the image.

Despite the promise of ease of integration of inhomoge-
neous information, most actual implementations of pairwise
segmentation only integrate region based information, with
color- and texture-based similarities taking the lion’s share
over all pairwise measures found in the literature. With
few exceptions [7, 5], little work has been done to inte-
grate boundary information in a pairwise setting. In con-
trast, the feature-based segmentation literature, partly due
to the more “local” nature of the approaches, sees an abun-
dance of frameworks integrating region and boundary in-
formation [8, 3, 2]. Approaches based on the Mumford and
Shah functional [8] and related functional formulation such
as Chan and Vese‘s active contours [3] integrate region and
boundary information by balancing region information ob-
tained through the inside/outside functionals with bound-
ary information imposed by the boundary elasticity prior.
Chakraborty and Duncan [2] propose a game-theoretic ap-
proach to integrate boundary and region information with-
out a tightly coupled geometric model. A different approach
is explored in the graph-cut framework [1]. Here pixel-
based boundary information and region-based pairwise in-
formation are integrated in a unifying framework. Within
the purely pairwise setting, we note Malik and cowork-
ers’ proposal to incorporate boundary information in the



normalized-cut framework by looking for an intervening
contour [7, 5]. However, their approach only looks for de-
tected edges in the straight line joining two pixels; hence,
it is strongly dependant on the quality of the edge extractor
and tends to separate pixels belonging to a single region if
this is not convex. The normalized cut framework is rel-
atively forgiving about this problem, but it is particularly
severe when using pairwise clustering algorithms that fa-
vor “compact” globular clusters such as the dominant sets
framework [9]. Furthemore, intervening contour informa-
tion alone is not able to separate regions with fuzzy or
unclear boundaries such as regions delimited by relatively
smooth gradients.

In this paper, we propose a boundary-based pixel dis-
tance measure based on the minimal edge response along
all paths joining two pixels. The idea underpinning our
proposal is similar in nature to the intervining contour; how-
ever, the searches for the path with minimal response allows
pixels of a connected but concave region to exhibit a low
distance. Furthermore, our approach does not need the ex-
traction of the boundary, but only requires the response of
any edge filter, hence making the approach more robust. Fi-
nally, since we integrate the edge response along the path,
the segmentation approach will work even in presence of
unclear boundaries.

Experiments performed with the dominant sets frame-
work show that the proposed approach is competitive with
the state of the art pairwise segmentation algorithms even
when using only boundary information. Furthermore, we
show that the approach can be used when adopting an out
of sample approach to pairwise segmentation.

2. Path-based Boundary Integration

Let g(x, y) be and edge-response function, a function
that has high values on edges and low (zero) values on
flat areas. Typically this could be the response of an edge-
detection filter, but more sophisticated edge functionals are
possible.Further, let γ : [0, 1] → IR2 be a path from point
a = γ(0) to point b = γ(1). We define the boundary resis-
tance along γ as:

Ωp(γ) =
(∫ 1

0

‖γ′(t)‖|g(γ(t))|p dt

) 1
p

, (1)

where p ∈ IR+ is a parameter. Clearly, when the path
crosses an edge, the boundary resistance assumes high val-
ues, while a path through a nearly homogeneous area yields
very small boundary resistance. Furthermore, when going
through a gradient of image intensity, the path slowly accu-
mulates boundary resistance. The parameter p controls how
the response accumulates when crossing gradients or mul-
tiple boundaries. The parameter works much in the same

Figure 1. Different path yield different bound-
ary resistances.

way as the parameter p in an lp norm, indeed, Ωp(γ) can
be seen as the infinite dimensional lp norm of the function
g(γ(t)) when γ is parametrized by arc-length. This means
that, as p increases, Ωp approximates a max-norm, hence its
value is dominated by the maximum edge-response along
γ. Conversely, when p is small, the relative differences of
the edge responses along γ are smoothed out, resulting in a
measure dominated by the length of the path γ.

We define the boundary resistance between two points a
and b as:

Dp(a, b) = min
γ

Ωp(γ) with γ(0) = a, γ(1) = b . (2)

In order to perform the computation on the discrete im-
age lattice, we abstract the image as a neighborhood graph,
where each pixel corresponds to a vertex in the graph, and
each vertex is connected by an edge to all vertices corre-
sponding to pixels in its neighborhood. In this paper we are
using a 4-neighborhood system, hence, the graph is a mesh,
but other neighborhood systems are possible. Further, to
each edge linking node i to node j we associate a weight

wij =
∣∣∣∣
(g(xi, yi) + g(xj , yj)

2

∣∣∣∣
p

. (3)

With this discrete representation, and recalling that x
1
p is

monotonic for p > 0, the computation of the minimum re-
sistance path is reduced to the computation of the shortest
path between each pair of points in a bounded-degree graph.
This problem can be efficiently solved with the well known
Dijkstra algorithm in O(n2 log n), where n is the number
of pixels.

The proposed approach bears strong similarities with
Fischer and Buhmann’s path-based pairwise clustering ap-
proach [4], where the distance between two points is calcu-



lated looking for the minimum distance path through the el-
ements to be clustered. However, in their approach, the cal-
culation is performed as a “closure” of the distance matrix
and works directly in the pairwise setting. Our approach,
on the other hand, works in the image lattice incorporating
proximity relations. This makes the initial distance infor-
mation sparse as only distance between neighboring pixels
is needed; hence, making the search for the optimal path
more efficient. Furthermore, Fischer and Buhmann only
take into account the maximum distance along a path, and
use resampling to enforce robustness, while our approach
achieves robustness by integrating information along the
path in a controlled way.

3. The dominant set framework

The dominant set framework is a pairwise clustering ap-
proach [9] that is based on the notion of a dominant set,
which can be seen as an edge-weighted generalization of a
clique. The appraoch has proven to be a fast and efficient
pairwise clustering framework.

3.1. Clustering using dominant sets

The dominant set framework is based on a recursive
characterization of the weight wS (i) of element i with re-
spect to a set S of elements, and characterizes a group as a
dominant set, i.e., a set that satisfies:

1. wS (i) > 0, for all i ∈ S

2. wS∪{i} (i) < 0, for all i /∈ S.

These conditions correspond to the two main properties of a
cluster: the first regards internal homogeneity, whereas the
second regards external inhomogeneity.

The main result presented in [9] provides a one-to-one
relation between dominant sets and strict local maximizers
of the following quadratic program

maximize f(x) = xtAx
subject to x ∈ ∆n

(4)

where A = (aij) is the matrix of similarities of the elements
to be grouped,

∆n = {x ∈ IRn : xi ≥ 0 for all i ∈ V and 1tx = 1}
is the standard simplex of IRn, and 1 is a vector of appro-
priate length consisting of unit entries.

Specifically, in [9] it is proven that if S is a dominant
subset of vertices, then its (weighted) characteristic vector
xS , which is the vector of ∆n defined as

xS
i =

{
wS(i)P

i∈S wS(i) , if i ∈ S

0, otherwise
(5)

is a strict local solution of program (4). Conversely, if x is
a strict local solution of program (4) then its support S =
σ(x) is a dominant set, provided that wS∪{i} (i) 6= 0 for
all i /∈ S. Here, the support of a vector x ∈ ∆n is the set
of indices corresponding to its positive components, that is
σ (x) = {i ∈ V : xi > 0}. The local maxima of (4) is
found using the replicator equations, a dynamical systems
mutuated from game-theory. The approach has proven to
be a very effective and robust pairwise clustering approach
that has in its speed one of its major selling points.

3.2. Out-of-sample extension

Despite it strong properties, the application of this
method to the segmentation of large images, and, indeed,
of any pairwise approach, is very hard if not unfeasible due
to the scaling behavior with the number of data items. On a
dataset containing N pixels, the number of potential com-
parisons scales with O(N2), thereby rendering any pairwise
approach too demanding, both in terms of computation time
and of space. A way of overcoming this drawback is to dras-
tically reduce the number of objects to be clustered and then
extend the partition to the full data-set. In [10] Pavan and
Pelillo propose an out-of-sample technique for the domi-
nant set framework. The approach creates a virtual clus-
ter centroid as a linear combination of the sample points
that belong to the cluster, or, equivalently, gives a measure
of distance of a point to a cluster. The weights of the lin-
ear combination are taken to be proportional to the weight
wS(i) of sample i with respect to the cluster S. This way,
the similarity of an out-of-sample point j to cluster centroid
cS , or simply to cluster S, is:

AS,j =
∑

i∈S

wS(i)∑
i∈S wS (i)

aij =
∑

i

xS
i aij , (6)

where xS = (xS
1 , · · · , xS

n)t is the maximum of (4) corre-
sponding to the cluster S. The first step of the out-of-sample
segmentation is to extract the clusters from the sampled
points. With the initial segmentation to hand, each pixel
is assigned to the closest cluster according to (6).

Note that using out-of-sample clustering we only need
distance from sample points to all other points in the image.
This means that we must run the Dijkstra algorithm only
from sources within the sample set. Hence, the total cost
of computing the distance matrix for the out of sample al-
gorithm is O(nN log N) where n is the number of samples
and N is the total number of pixels. If n ¿ N the com-
puting the matrix is essentially log-linear in the number of
pixels, which means that it has essentially the same cost as
computing the edge response using a derivative of Gaussian
or other linear filters using FFT.



4. Experimental Results

In order to assess the ability of the proposed distance
measure to represent a stable boundary-based distance for
image segmentation, we performed a set of experiments us-
ing only our measure. Clearly, the final goal is to incor-
porate the measure with standard region based similarities,
but, to be considered descriptive and stable, the measure
must allow for a reasonable segmentation even when ap-
plied alone.

Figure 2 shows the result of applying the dominant sets
clustering algorithm to the proposed measure with p = 1
and the edge response obtained through a Sobel filter. The
images where mostly selected from the Berkeley database
so that the results could be compared with those published
in [9, 13], and where scaled so that their size ranged from
5000 to 36000 pixels. The left column shows the origi-
nal images, while the right column shows the segmented
images, where all pixels belonging to the same cluster are
drawn using the average color of the cluster. From the re-
sults we can see that the output is competitive with other
region-based pairwise segmentation approaches. In partic-
ular, note, for example, that grains of the wooden door in the
first image, while quite visible in the image, are not enough
to split the door into separate clusters, something that would
happen looking only at interposing edges.

Our next set of experiments focuses on the effects of the
parameter p. Figure 3 displays the segmentations obtained
with values of p varying from 0.5 to 8. Again, the segmen-
tation was performed using only the proposed boundary-
based measure with the edge response obtained through a
Sobel filter. Here we can see that with the lowest value
of p the measure is dominated by the distance between the
points, with only the strongest edges influencing the seg-
mentation. The extracted clusters tend to be very compact
and break only on very strong lines. The compactness im-
posed by the dominance of the distances prevented the algo-
rithm from extracting thin clusters forcing it to ignore close
parallel edges. On the other hand, as p increases, the mea-
sure is dominated by the single maximum response along
the path, making the measure more sensible to thin lines,
but making it less robust to noise as well. In fact we can see
that for large p small random noise in the images produced
several small clusters with only one or two pixels. A less
noisy edge response such as a gradient of Gaussian might
alleviate the problem, but ultimately, very high values of p
will make the measure unstable even under moderate level
of noise. In general the best results where obtained with
values of p between 1 and 2, with 1 been the best value on
average.

Finally, Figure 4 shows the clusters obtained using our
measure with the out-of-sample extension of the domainant
set framework. Here the original images where much larger, Figure 2. Segmentation using dominant sets

and our boundary-based measure.



original p=0.5 p=1 p=2 p=4 p=8

Figure 3. Effects of the parameter p on the segmentation process.



Figure 4. Out of sample segmentation using the proposed measure.

over 150000 pixels in total, with a sampling rate of 1.2%.
As we can see, even with the reduced information of the out
of sample framework the segmentation works quite well,
yielding results comparable with those obtained using the
full set of distances.

5. Conclusions

In this paper we presented a novel boundary-based mea-
sure of pixel similarity to be used in conjunction of other
region-based similarity measures in pairwise segmentation
algorithms. The measure integrates an edge-response filter
along a path and searches for the minimal-response path be-
tween two pixels using the Dijkstra algorithm. A parameter
p allows us to control whether the final distance is dom-
inated by the maximal edge-response along the path, by
the average response, or by the path length, with all the
possibilities in-between being available. Experiments us-
ing the dominant sets pairwise clustering framework show
that good segmentation can be achieved even when using
boundary information alone and that the measure is robust
for small values of p, while higher values of the parameter
make the approach more sensitive to noise. Finally, experi-
mental results show that the measure is capable of produc-
ing good results even when using an out-of-sample exten-
sion of the clustering algorithm.
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