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Abstract—This paper considers a low-complexity Gaussian
Message Passing Iterative Detection (GMPID) method over a
pairwise graph for a massive Multiuser Multiple-Input Multiple-
Output (MU-MIMO) system, in which a base station with M
antennas serves K Gaussian sources simultaneously. Both K and
M are large numbers and we consider the cases that K < M
in this paper. The GMPID is a message passing algorithm
based on a fully connected loopy graph, which is well known
that it is not convergent in some cases. In this paper, we first
analyse the convergence of GMPID. Two sufficient conditions
that the GMPID converges to the Minimum Mean Square Error
(MMSE) detection are proposed. However, the GMPID may
still not converge when K/M > (

√
2 − 1)2. Therefore, a new

convergent GMPID with equally low complexity called SA-
GMPID is proposed, which converges to the MMSE detection for
any K < M with a faster convergence speed. Finally, numerical
results are provided to verify the validity and accuracy of the
proposed theoretical results.

I. INTRODUCTION

Multiuser Multiple-Input and Multiple-Output (MU-MIMO)
has become a key technology for wireless communication
standards like IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-
Fi), WiMAX (4G) and Long Term Evolution (4G). Recent
research investigations [1], [2] show that MU-MIMO will
play a vital role in the future wireless systems. Recently, the
massive MU-MIMO, where the Base Station (BS) has a very
large number of antennas (e.g., hundreds or even more), has
attracted more and more attention [1]–[5]. For instance, several
researchers prove that the massive MU-MIMO can bring huge
improvement both in throughput and energy efficiency [3]–[5].

One of the current challenging problems in massive MU-
MIMO is the low-complexity signal detection in the up-link
[2]. In the case of Gaussian sources, it is well known that
Minimum Mean Square Error (MMSE) detection is optimal.
However, the complexity is significantly high for its unfa-
vorable matrix inversion [6]. Another kind of MU-MIMO
detection is graph based detection called message passing
algorithm [7], [8]. There are two kinds message passing
algorithms, One of which is Gaussian Belief Propagation
(GaBP) algorithm based on a graph that consisted by variable
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nodes [9]–[14] and the other is Gaussian Message Passing
Iterative Detection (GMPID) based on a pairwise graph that
consists of variable nodes and sum nodes [15]–[20]. Both of
them are efficient distributed message passing algorithms for
Gaussian graphical models. Moreover, the GMPID has also
been studied for equalization in the inter-symbol interference
channel [15] and the decoding of modern channel codes, such
as turbo codes and low density parity check codes [16].

It is proved that if the factor graph is of tree structure,
the means and variances of the message passing algorithm
converge to the true marginal means and approximate marginal
variances respectively [7], [8]. However, if the graph has
cycles, the message passing algorithm may fail to converge.
Most previous works of the message passing algorithm focus
on the convergence of the GaBP algorithm. Three general
sufficient conditions for convergence of GaBP in loopy graphs
are known: diagonal-dominance [10], [11], convex decompo-
sition [9] and walk-summability [12]. Recently, a necessary
and sufficient variances convergence condition of the GaBP is
given in [13]. For the GMPID based on the pairwise graph, a
sufficient condition of the means convergence is given in [17].
However, the posterior density matrixes of each sum node are
needed to calculate [17], which introduces the matrix inversion
operation and a much higher computational complexity during
the message updating. Montanari [18] has proved the GMPID
algorithm converges to the optimal MMSE solution for any
arbitrarily loaded randomly-spread CDMA system, but this
only works for CDMA MIMO system with binary channels. In
general, the GMPID has lower computational complexity and
a better Mean Square Error (MSE) performance than the GaBP
algorithm. To the best of our knowledge, the convergence of
GMPID based on a pairwise graph is far from completion.

In this paper, we analyse the convergence of the existing
GMPID and propose a new convergent detection method for
massive MU-MIMO systems with K users and M antennas.
Let β = K/M and β < 1. The contributions of this paper are
summarized as follows.
1) We prove that the variances of GMPID definitely converge

to the MSE of MMSE detection, which also gives an
alternative way to estimate the MSE performance for the
MMSE detection.

2) Two sufficient conditions are derived to guarantee that the
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means of GMPID converge to that of MMSE detection
for {β : 0 < β < (

√
2− 1)2}.

3) A new convergent GMPID called SA-GMPID is proposed,
which converges and converges faster than GMPID to the
MMSE detection for any {β : 0 < β < 1}.

II. SYSTEM MODEL AND MMSE DETECTOR

In this section, the massive MU-MIMO system model and
some preliminaries about the optimal MMSE detector for the
massive MU-MIMO systems will be introduced.

A. System Model
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Fig. 1. MU-MIMO system model: K autonomous single-antenna terminals
simultaneously communicate with an array of M antennas of the base station..

Fig. 1 shows the system model. we consider a uplink MU-
MIMO system with K users and one BS with M antennas
[2]–[4]. For massive MIMO, the K and M are very large (be
hundreds or thousands), e.g., M = 600 and K = 100. The
M × 1 received signal vector y at the BS is represented by

y = Hx + n, (1)

where H denotes the M×K channel matrix, n ∼ NM (0, σ2
n)

is an M × 1 independent Additive White Gaussian Noise
(AWGN) vector and x is the message vector sent from K
users. We assume that the channels only suffer from the
small-scale fading without large-scale fading, in which H
denotes the Rayleigh fading channel matrix whose entries
are independently and identically distributed (i.i.d.) with zero
mean and unit variance, i.e., normal distribution N (0, 1). Each
component of x is Gaussian distributed, i.e., xk ∼ N (0, σ2

xk
),

k ∈ {1, 2, · · · ,K}. The task of multi-user detection at the
BS is to estimate the transmitted signal vector x from the
received signal vector y. Noting that the channel matrix H can
be usually obtained by time-domain and/or frequency-domain
training pilots [5], we assume that the BS knows the Channel
State Information (CSI) H. In this paper, we only consider
the real MU-MIMO system because the complex case can be
easily extended from the real case [14].

B. MMSE Detector

It is well known that MMSE detection is optimal under
MSE measure when the sources are gaussian distributed [21].
Let Vx denote the covariance matrix of the sources x. Then,
the MMSE detector [6] is given by

x̂ = σ−2n Vx̂H
T y = σ−2n (σ−2n HTH+V−1x )−1HT y, (2)

where Vx̂ = (σ−2n HTH + V−1x )−1, which denotes the
deviation of the estimation to the initial sources. Moreover,
the kth diagonal element vkk of the covariance matrix Vx̂
denote the deviation of the estimation to the source xk.

The following is given by the random matrix theory [21].
Proposition 1: When β = K/M < 1 is fixed, K →∞ and

the sources are i.i.d. with N (0, σ2
x), the MSE performance of

the MMSE detection is described by

MSE = σ2
x

(
1− 1

4sβM
F (sM, β)

)
→ σ2

n

M −K
, (3)

where s = σ2
x

/
σ2
n is signal-to-noise ratio.

When β = K/M < 1, K → ∞, the MSE of the MMSE
detection is determined by the variance of the Gaussian noise
and M −K, but independent of the variances of the sources.

Remark: The complexity of MMSE detector is O(K3 +
MK2), where O(K3) is for the inverse calculation and
O(MK2) is for the matrix multiplication HTH. As this com-
plexity is very high, it movtivates us to use a low complexity
detection method.

III. GAUSSIAN MESSAGE PASSING ITERATIVE DETECTION
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Fig. 2. Gaussian message passing iterative detection for MU-MIMO systems.
The channel parameter from user k to anntenna m is hmk , the distribution
constranits of each source and noise are denoted by Pxk and PNm .

In this paper, we consider the GMPID based on a pairwise
factor graph for the MU-MIMO system. Fig. 2 gives the factor
graph of MU-MIMO system. The process is very similar to
the Belief Propagation (BP) decoding process of LDPC code
[16]. The differences are: 1) the different passing messages on
each edge (the mean and variance of a Gaussian distribution);
2) the different message update functions.

A. Message Update at Sum Nodes

Each sum node can be seen as a multiple-access process
and the message update at the sum nodes is given by

esm→k(t) = ym −
∑
i 6=k

hmie
v
i→m(t− 1) ,

vsm→k(t) =
∑
i 6=k

h2miv
v
i→m(t− 1) + σ2

n ,
(4)

where i, k ∈ {1, 2, · · · ,K},m ∈ {1, 2, · · · ,M}, ym is the
m-th element of the received vector y, hmi is the element



of channel matrix H and σ2
n is the variance of the Gaussian

noise. What’s more, evk→m(t) and vvk→m(t) denote the mean
and variance passed from kth variable node to mth sum
node respectively, esm→k(t) and vsm→k(t) denote the mean
and variance passed from mth sum node to kth variable node
respectively. The initial value vv(0) equals to +∞ and ev(0)
equals to 0, where vv(t) and ev(t) are vectors containing the
elements vvk→m(t) and evk→m(t) respectively.

B. Message Update at Variable Nodes

Each variable node can be seen as a broadcast process and
the message update at the variable nodes is denoted by vvk→m(t) =

(∑
i

h2ikv
s −1

i→k (t) + σ−2xk

)−1
,

evk→m(t) = vvk→m(t)
∑
i

hikv
s −1

i→k (t)e
s
i→k(t) .

(5)

where k ∈ {1, 2, · · · ,K}, i,m ∈ {1, 2, · · · ,M} and σ2
xk

denotes the variance of the source xk.
After the given number of iterations between (4) and (5),

we output x̂k as the estimation of xk and its MSE σ2
x̂k

.

σ2
x̂k

= vvk→m(t), x̂k = evk→m(t), (6)

where k ∈ {1, 2, · · · ,K}.
It is easy to calculate the computational complexity for each

iteration. In each iteration, it needs about 8KM multiplica-
tions. Therefore, the complexity is low (O(KMNite)), where
Nite is the number of iterations.

C. Variances Convergence of GMPID (New Results)

In this subsection, we give the variances convergence of
GMPID. The inequations in this paper correspond to the
component-wise inequality. From (4)(5), we have

vvk→m(t)=

∑
i

h2ik

∑
j 6=k

h2ijv
v
j→i(t− 1) + σ2

n

−1+ σ−2xk


−1

.

(7)
As the initial value vv(0) is equal to +∞, it is easy to see
that vv(t) > 0 for any t > 0 during the iteration. So vv(t) has
a lower bound 0. From (7), we can see that vv(t) is a mono-
tonically non-decreasing function with respect to vv(t − 1).
Moreover, we can get vv(1) < vv(0) = +∞ for the first iter-
ation. Therefore, it can be shown that vv(t) ≤ vv(t− 1) with
vv(1) ≤ vv(0) from the monotonicity of the iteration function.
These mean that {vv(t)} is a monotonic decreasing sequence
but lower bounded. Thus, sequence {vv(t)} converges to a
certain value, i.e., lim

t→∞
vv(t) = v∗.

To simplify the calculation, we assume Vx = σ2
xIK , i.e.,

σ2
xk

= σ2
x. With the symmetry of all the elements of v∗, we

can get v∗k→m = σ̂2, k ∈ {1, · · · ,K} and m ∈ {1, · · · ,M}.
Thus, from (7), the convergence point σ̂2 can be solved by

σ̂2 =

∑
i

h2ik

σ̂2
∑
j 6=k

h2ij + σ2
n

−1 + σ−2x


−1

. (8)

As the channel parameters h2ik and h2ij are independent with
each other, the above expression can be rewritten as

σ−2x
∑
j 6=k

h2ij σ̂
4 + (σ2

nσ
−2
x +

∑
i

h2ik −
∑
j 6=k

h2ij )σ̂
2 − σ2

n = 0.

(9)
When M is large, taking an expectation for (9) with respect
to the channel parameters h2ik and h2ij , we get

Kσ−2x σ̂4 + (σ2
nσ
−2
x +M −K)σ̂2 − σ2

n = 0. (10)

Then σ̂2 is the positive solution of (10), i.e.,

σ̂2=

√
(σ2
nσ
−2
x +M−K)

2
+4Kσ−2x σ2

n−(σ2
nσ
−2
x +M−K)

2Kσ−2x
.

(11)
With (11), (5) and (6), we can get the following proposition.

Proposition 2: When β = K/M < 1 is fixed, K →∞ and
the sources are i.i.d. with N (0, σ2

x), the variances of GMPID
converge to

σ2
x̂ = σ̂2 ≈ σ2

n

M −K + s−1
. (12)

Comparing (3) and (12), we can see that it gets the same
results as performance analysis by the random matrix theory.
Thus, the following theorem can be given.

Theorem 1: When β = K/M < 1 is fixed, K → ∞ and
the sources are i.i.d. with N (0, σ2

x), the variances of GMPID
converge to the exact MSE of the MMSE detection.

It should be pointed out that the above analysis provides an
alternative method to estimate the MSE performance of the
MMSE detection. The variances convergence analysis here is
simpler and even suitable for the irregular channel matrix.

Similarly, sequence {vs(t)} also converges to a certain
value, i.e., vsm→k → σ̃2. From (4), we can get

σ̃2 ≈ Kσ̂2 + σ2
n. (13)

Let γ = σ̂2
/
σ̃2, from (12) and (13), we get

γ =
1

K + σ2
n

/
σ̂2
≈
(
M + s−1

)−1
. (14)

D. Means Convergence of GMPID (New Results)

In this subsection, the means convergence of GMPID will
be given. Unlike the variances, the means are not always con-
vergent. Two sufficient conditions for the means convergence
are given as follows.

Theorem 2: When β = K/M < 1 is fixed and K → ∞,
the GMPID converges to the MMSE estimation if any of the
following conditions holds.

1. The matrix IK + γ
(
HTH−DHTH

)
is strictly or irre-

ducibly diagonally dominant,
2. ρ

(
γ(HTH−DHTH)

)
< 1.

Where γ = σ̂2
/
σ̃2 and ρ (A) is the spectral radius of A.

Proof: The proof is omitted due to the page limit.
As γ → 1

M+s−1 and K∞ with β < 1, from random matrix
theory, we have

ρ(γ(HTH−DHTH))→ β + 2
√
β, (15)



for a finite s. Then, from the second condition of Theorem 2,
we have the following corollary.

Corollary 1: When β = K/M < 1 is fixed and K →∞, the
GMPID converges to the MMSE estimation if β < (

√
2−1)2.

IV. A NEW FAST CONVERGE DETECTOR SA-GMPID

From Corollary 1, we know that when (
√
2− 1)2 ≤ β < 1

the GMPID may not converge. So, in this subsection, we will
give a scaled-and-added GMPID called SA-GMPID to fix the
convergence of GMPID. In the following, let H′ =

√
wH and

y′ =
√
wy , where h′mk =

√
whmk is an element of matrix H′

and w is a relaxation parameter. We let γ = σ̂2
/
σ̃2 and assume

vvk→m(t) and vsm→k(t) converges to σ̂2 and σ̃2 respectively.
We deal with the case when β = K/M < 1.

A. SA-GMPID Algorithm

The message update of SA-GMPID of variable node (5) isv
v
k→m(t) =

(∑
i

h2ikv
s −1

i→k (t) + σ−2xk

)−1
,

evk→m(t)=v
v
k→m(t)

∑
i

h′ikv
s −1

i→k(t)e
s
i→k(t)−(w−1)evk→m(t−1).

(16)
The message update at the sum node (4) is changed as

esm→k(t) = y′m −
∑
i 6=k

h′mie
v
i→m(t− 1),

vsm→k(t) =
∑
i 6=k

h2miv
v
i→m(t− 1) + σ2

n .
(17)

After the iteration between (16) and (17), output
σ2
x̂k

=

(∑
m
h2mkv

s −1

m→k(t) + σ−2xk

)−1
,

x̂k = σ̂2
xk

∑
m

(
h′mkv

s −1

m→k(t)e
s
m→k(t)− w−1

M evk→m(t− 1)
)
,

(18)
where k∈{1, 2, · · · ,K}. Next, its convergence will be proved.

B. Convergence Analysis of SA-GMPID

Theorem 3: When β = K/M < 1 is fixed and K →∞, the
SA-GMPID converges to the MMSE detector if the relaxation
parameter w satisfies 0 < w < 2/λAmax, where λAmax is the
largest eigenvalue of A = γ

(
HTH−DHTH

)
+ IK .

Proof: The proof is omitted due to the page limit.
The optimal relaxation parameter w is given by

w = 2/(λAmin + λAmax). (19)

By the random matrix theory [24], when β = K/M is fixed
and K → ∞, the smallest and largest eigenvalues λAmax and
λAmin of matrix A are estimated given by

λAmin=1 + γM

[(
1−
√
β
)2
−1
]
, λAmax=1 + γM

[(
1+
√
β
)2
−1
]
.

(20)
The spectral radius of IK − wA is ρmin(IK − wA) =
λA
max−λ

A
min

λA
max+λ

A
min

< 1 . From (20), we have w = 1/(1 + γMβ).
When β < 1, from (14), Mγ → 1. Thus,

w = 1/(1 + β), ρmin(IK − wA) ≈ 2
√
β

1 + β
< 1. (21)
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Fig. 3. Performance comparison between GMPID and the other iterative
methods: Gaussian BP, Jacobi and Richardson method. The simulations are
for 100× 300 MU-MIMO system with β = 1/3 and 1 ∼ 30 iterations.
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Fig. 4. Performance comparison between the GMPID and SA-GMPID.
Figures A1 and A2 are for 1000 × 1500 MU-MIMO system with 1 ∼ 100
iterations and β = 2/3. Figures B1 and B2 are for 10 × 60 MU-MIMO
system with 20 iterations and β = 1/6.

TABLE I
CONVERGENCE COMPARISON BETWEEN SA-GMPID, GMPID, JACOBI,

GABP AND RICHARDSON METHOD. THE “C” AND “D” DENOTE
CONVERGENT AND DIVERGENT RESPECTIVELY, AND “ + ” AND “− ”

DENOTE THE RIGHT LIMIT AND THE LEFT LIMIT RESPECTIVELY.

Figure β
Jacobi

& GaBP
GMPID

Richardson

& SA-GMPID

Fig. 4 β < (
√
2− 1)2 C C C

Fig. 5 β → (
√
2− 1)2+ D C C

Fig. 6 β → 1− D D C

Comparing with (15), we get the following corollary.
Corollary 2: The SA-GMPID converges faster than the

GMPID when β = K/M < 1 is fixed and K →∞.

V. SIMULATION RESULTS

In this section, we give the numerical results of the proposed
GMPID for the MU-MIMO system with Gaussian sources.



Assume that the sources are i.i.d. with xk ∼ N (0, 1) and the
entries of the channel matrix H are i.i.d. with normal distri-
bution N (0, 1). In the following simulations, Nite denotes the
number of iterations, SNR = 1

σ2
n

and MSE = 1
K (x − x̂)2

denotes the average mean squared error. All the simulations
are repeated 500 times to get the results.

Fig. 3 gives the average MSE performance and convergence
comparison between the SA-GMPID and the other iterative
methods: Jacobi method, Gaussian BP method and Richardson
method [14], where K = 100 and M = 300. We can see that
the GMPID converges faster (although β = 1/3 > (

√
2 −

1)2 ) to the MMSE detection than the other three methods.
Furthermore, the SA-GMPID converges even when the Jacobi
method and Gaussian BP method diverge. It should be noted
that SA-GMPID has the lowest complexity.

Fig. 4 gives the average MSE performance comparison be-
tween the GMPID and SA-GMPID for the cases that β = 2/3,
K = 1000, M = 1500 with 100 iterations (figures A1 and A2)
and β = 1/6, K = 10, M = 60 with 20 iterations (figures B1
and B2), respectively. We can see that the GMPID is diverging
when β → 1 with figure A1. In particular, figure A2 shows
the SA-GMPID converges to the MMSE detection with the
increase number of iterations. This verifies our analysis result
in Theorem 3. Furthermore, figures B1 and B2 show that
1) SA-GMPID converges faster to the MMSE detection than
GMPID (Corollary 2) and 2) the proposed theoretical results
are also suitable for MU-MIMO systems with a small number
of antennas and users.

Table I concludes the convergence comparison of the differ-
ent detection methods, where “C” (or “D”) denotes convergent
(divergent) and “+” (or “−”) denotes right limit (left limit).
It shows that 1) all the iterative methods are convergent when
β < (

√
2−1)2, 2) the Jacobi and GaBP methods are divergent

when β larger than (
√
2− 1)2, 3) GMPID is still convergent

when β close to (
√
2 − 1)2+ and 4) Richardson method and

SA-GMPID are convergent when β close to 1.

VI. CONCLUSION

A low-complexity detection method GMPID has been dis-
cussed, in which the means and variances are transmitted
between the variable nodes and sum nodes. The convergence
of GMPID has been analysed. It is proved that the variances
of GMPID converge to the MSE of MMSE detection. Two
sufficient conditions that the GMPID converges to the MMSE
detection have also been presented. As the GMPID does not
converge when β → 1, SA-GMPID has been proposed, which
converges to MMSE detection in any case that K < M . Nu-
merical results are provided to verify the proposed theoretical
results. It should be noted that our simulations show that the
proposed theories are also suitable for MU-MIMO systems
with a limited number of antennas and users.
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