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Abstract— In this paper we evaluate user-equipment (UE) 
positioning performance of three cluster-based RF 
fingerprinting methods using LTE and WLAN signals. 
Real-life LTE and WLAN data were collected for the 
evaluation purpose using consumer cellular-mobile 
handset utilizing ‘Nemo Handy’ drive test software tool. 
Test results of cluster-based methods were compared to 
the conventional grid-based RF fingerprinting. The 
cluster-based methods do not require grid-cell layout and 
training signature formation as compared to the grid-
based method. They utilize LTE cell-ID searching 
technique to reduce the search space for clustering 
operation. Thus UE position estimation is done in short 
time with less computational cost. Among the cluster-based 
methods Agglomerative Hierarchical Cluster based RF 
fingerprinting provided best positioning accuracy using a 
single LTE and six WLAN signal strengths. This method 
showed an improvement of 42.3 % and 39.8 % in the 68th 
percentile and 95th percentile of positioning error (PE) 
over the grid-based RF fingerprinting.

Keywords- LTE cell-ID; Grid-based RF fingerprinting; K-
Nearest Neighbor; Hierarchical Clustering; Fuzzy C-means; 
Minimization of Drive Tests 

I. INTRODUCTION

Over the next decade the integration of location services 
into our day-to-day life will increase significantly as 
technologies mature and accuracy improves. Currently, as an 
accurate and reliable outdoor localization system Global 
Navigation Satellite System (GNSS) has revolutionized 
navigation-based applications running on automotive GNSS-
enabled devices and smart phones. However, GNSS relies on 
special hardware support, has high complexity, high battery 
consumption and the access to GPS signals is limited in some 
environments, such as urban areas with many high buildings, 
mountainous terrain and indoor areas [1]. Received Signal 
Strength (RSS) based fingerprinting localization has been the 
most widely used technique for user positioning during the last 
few decades [2-3]. Researchers are studying how to conduct 
radio signal positioning through signals from existing wireless 
infrastructure, such as cellular networks [2], WiMaX [3] and 
WiFi [4-5] networks. The rapid expansion of Wi-Fi access 

points (AP) across the urban/indoor environments made it 
possible for researchers to envision alternatives to TOA-based 
systems. One success story for deployment in the urban 
environment is Skyhook Wireless [6]. Skyhook realized the 
potential of exploiting Wi-Fi signals emitted from residential 
homes and offices that are continuously in use. They have 
improved localization by building databases of Wi-Fi 
signatures tied to locations that could be integrated to aid in 
the localization process. Wi-Fi based fingerprint positioning 
system was evaluated in the Sydney CBD area and test results 
show that it works well for outdoor localization with errors in 
the tens of meters [7]. In [8] authors have carried out outdoor 
fingerprinting over WLAN and achieved good accuracy using 
802.11-based positioning.  

In this study we have evaluated cluster-based RF finger- 
printing approaches which have taken into account four key 
challenges of fingerprint positioning [5]:  

1) RF fingerprint generation: the factors affecting 
fingerprint generation are the placement and number of survey 
points and time samples. Most approaches have selected such 
parameters experimentally. In order to avoid such difficulties 
we have used real life Minimization of Drive Tests (MDT) 
date - a feature introduced in 3GPP Release 10 which enables 
operators to utilize users’ equipment to collect radio 
measurements and associated location information [9].  

2) Preprocessing of recorded training data for reducing 
computational complexity: in [4] authors have proposed an 
offline clustering of locations aiming to reduce the search space 
to a single cluster. Chen et al. in [10] consider the similarity of 
signal values, as well as the covering APs, to generate a set of 
clusters using K-means to improve the power efficiency of 
mobile devices. Both of the above clustering techniques are 
carried out offline based on the training data. This hampers the 
operation of the system over time since WLAN infrastructures 
are highly dynamic and APs can be easily moved or discarded, 
in contrast to their base-station counterparts in cellular systems, 
which generally remain intact for long periods of time [5]. 
Therefore, we have used a combination of LTE and WLAN 
signal strengths, generalized MDT (GMDT) which gives us the 
opportunity to use LTE serving cell-ID based searching 
technique to deliver user-equipment (UE) positioning in short 
time with less computational cost. 



                                     

3) Selection of APs for use in positioning: in a typical 
dense urban WLAN environment the number of available APs 
is much higher than three and using all available APs increases 
the computational complexity of the positioning algorithm. In 
this research we have chosen seven LTE and WLAN signals 
for position estimation which has been found to be effective 
from previous Wi-Fi positioning results [11].   

4) User equipment (UE) position estimate based on a new 
RSS observation: in the simplest case, the Euclidean distance 
is used to find the distance between the new RSS observation 
and the center of the training RSS vectors at each survey point 
or grid cell units [12][13]. However, choosing an optimal grid-
cell layout requires computational power and training time 
[14]. Hence, we have selected cluster-based RF fingerprinting 
(CRFFP) methods: K-Nearest Neighbor (KNN), 
Agglomerative Hierarchical Clustering (AHC) and Fuzzy C-
Means (FCM) which do not create training signatures through 
grid-cell layout during the training phase. To verify the 
effectiveness of CRFFP methods UE positioning results were 
compared to that of the conventional grid-cell based RF 
fingerprint positioning (GRFFP).

The rest of the paper is organized as follows: Section II 
contains a brief description of the recorded GMDT field 
measurements and then the conventional GRFFP method is 
described. In section III we explain three different CRFFP 
methods.  Experimental test results of GRFFP and CRFFP 
methods are shown in section IV. Finally we draw some 
concluding remarks in section V. 

II. GRID-BASED RF FINGERPRINTING  USING GMDT 

A. Generalized MDT Measurements 
Drive tests are the main source for collecting measurement 

data from cellular networks which is costly and time 
consuming. The problem that drive tests need human effort to 
collect measurement data and that only spot measurements can 
be performed, has led to automated solutions which include the 
UEs from the end user. The feature for this evolution in the 
3GPP standard is named MDT [14]. Here we were motivated to 
use GMDT data which is an enhancement to the LTE 
Minimization of Drive Tests architecture allowing the 
collection of location-aware radio measurements from WLAN 
access networks as well. Grid-based RF fingerprinting test 
results show that GMDT data containing only the single 
strongest WLAN measurement in addition to the LTE RF 
fingerprint can improve the 67th percentile location accuracy 
from 88.2 m to 49.4 m [15]. The GMDT database were created 
with the help of a popular drive test software application 
known as Nemo Handy installed in Samsung Galaxy S3 (LTE 
capable) [16]. This handheld drive test tool is very suitable for 
performing measurements both outdoors and in crowded indoor 
spaces while being simultaneously used as a regular mobile 
phone. In our research we have recorded reference signal 
received power (RSRP) values of LTE serving and neighboring 
base station (BS) signals and received signal strength 
indicator (RSSI) values of WLAN APs. About 150 kilo-metres 
of measurements were collected by feet, bicycle and car 
covering approximately an area of 0.33 square kilo-metres of  a 

residential urban area in Tampere, Finland during September 
2014 as shown in Fig. 1. 

The GMDT samples used in this study were from LTE 
1800 MHz measurements, in which 800 MHz inter-frequency 
measurements were also reported according to the 
measurement configuration provided by the network. Every 
route was repeated at least twice to ensure that enough 
measurement samples were collected for each grid unit. From 
the measurements we have found that all the GMDT samples 
contain at least one serving LTE BS RSRP and 98% of the 
samples comprises of more than five WLAN RSSI values. 
Authors in [15] have selected WLAN APs based on the largest 
signal strength values recorded at each location. Hence we 
have chosen seven signal strength values in total including 
both LTE RSRPs and WLAN RSSIs. Both RSRP and RSSI 
values were sorted in descending order of signal strength 
values. We were interested to see how different combinations 
of LTE and WLAN signals affect the UE positioning 
performance using the same fingerprinting method. Thus three 
different sets of GMDT samples were created by choosing 
different combinations of LTE and WLAN signals from the 
total database. A GMDT measurement set is defined by: 

Mj = {sj,1, sj,2,…, sj,N}   (1)

where, j=1, 2 and 3 refers to the different GMDT sets, N is 
the total number of measurement samples of any particular set. 
The nth GMDT sample of a set is given by a row vector: 

Sj,n = {LWID, RSSLW, PXY}  (2) 

where, LWID denotes the LTE BS IDs and WLAN AP IDs,  
RSSLW comprises of the corresponding RSRP and RSSI values, 
and  PXY contains the x-y coordinates of the UE obtained from 
GNSS information. 

B. Grid-cell based RF Fingerprint Positioning 
A conventional single grid-cell layout based RF 

fingerprinting method was used, which segmented the whole 
geographical area of interest into 10m-by-10m square grid-cell 
units (GCU). Euclidean distance was used to measure the 
statistical difference between training fingerprints and test 
samples, as previous WLAN-based UE positioning research 
suggests it to be effective [17].  

Training Phase: To reduce the searching time of the best match 
training signature for a test sample and also to reduce the related 
computational cost, a single training signature (TrainSig) is created 

Fig. 1: GMDT field measurement area in Tampere, Finland



                                     

from all the training GMDT samples that belong to a particular 
GCU. The TrainSig formed from all the GMDT samples of ith 
GCU (GMDTsi

All) is defined as follows:  

Traini
sig = {TSID

LW, RSSTS
LW, PRef

XY}  (3) 

where, TSID
LW contains all unique LTE BS IDs and WLAN 

AP IDs obtained from GMDTsi
All, RSSTS

LW is a vector of the 
corresponding mean LTE RSRP and WLAN RSSI values, and  
PRef

XY is the reference x-y coordinate calculated from the mean 
values of x and y coordinates of GMDTsi

All. 

Test Phase: To test a GMDT sample we first compare its 
LTE and WLAN IDs with all the training signatures available 
and select those signatures which meet a least matching 
threshold. The minimum matching threshold (MT) was set to 
three, so in this case all the training signatures that contain at 
least three or higher number of LTE and WLAN IDs similar to 
that of test sample will be chosen. The maximum MT number 
was set to six. A simplified Mahalanobis distance equation is 
used for distance calculation where the inverse covariance 
matrix is replaced by an identity matrix: 

d(TestSam, TrainSig) = { (uTe − uTr)T I (uTe − uTr) }       (4) 

where,  uTe and  uTr denotes the RSRP and RSSI values of 
the TestSam and a selected TrainSig respectively and I is the 
identity matrix. After separate calculation of all the distances 
between a TestSam and the selected training signatures; the 
TrainSig corresponding to the smallest Euclidean distance is 
chosen for test UE positioning. The estimated position of that 
TestSam is given by PRef

XY of the chosen TrainSig. 

III. CLUSTER-BASED RF FINGERPRINT POSITIONING

A. K-nearest Neighbors Cluster-Based Positioning 
KNN is one of the basic algorithms used for UE positioning 

using RF fingerprint [18]. In this work we have chosen K to be 
5 which has given good positioning result in WLAN 
positioning performed in [19]. Here the only processing 
required during the data collection phase is to group the GMDT 
samples according to the LTE serving BS ID. During the 
positioning phase the first task is to choose the group of GMDT 
samples according to the LTE serving BS ID of the test GMDT 
sample. Then for selecting training GMDT samples (TrainSam) 
we start with the highest MT number: 7 and select n TrainSam
which match with the TestSam IDs. If we do not get any TrainSam 
corresponding to the chosen MT then MT is lowered to the 
next integer number and select n TrainSam that matches with the 
TestSam IDs. This process continues until we get multiple 
matched TrainSam or the lowest MT is reached. Now Euclidean 
distance is used to choose five closest GMDTs with the KNN 
algorithm: 

DTrainSam, TestSam = { j=1
n (TrainRSS − TestRSS) }     (5) 

where, TrainRSS and TestRSS are vectors of LTE RSRP and 
WLAN RSSI values of TrainSam and TestSam respectively.

The test UE position is estimated from the mean x-y 
coordinate value of the five selected TrainSam. 

B. Agglomerative Hirarchical Cluster-based Positioning
The AHC clustering method uses Davies-Bouldin criterion 

to select the optimal cluster number [20]. This criterion is 
based on a ratio of within-cluster and between-cluster 
distances. The Davies-Bouldin index (DB) is defined by the 
follow equation:   

DB = (1/k){ i=1
k maxj i (Di,j) }                    (6) 

where, k is the number of clusters, Di,j is the within-to-
between cluster distance ratio for the ith and jth clusters. Di,j is 
given by:            Di,j = (di¯ + dj¯)/di,j             (7) 

where, di¯ is the average distance between each point in 
the ith cluster and the centroid of the ith cluster. dj¯ is the 
average distance between each point in the ith cluster and the 
centroid of the jth cluster. di,j is the Euclidean distance between 
the centroids of the ith and jth clusters. During evaluation 
optimal cluster number is set between 1 to 6 using the smallest 
Davies-Bouldin index value. When multiple clusters are 
formed, clustering criteria (CC) is followed: the cluster which 
contains the TestSam must contain at least two GMDTs. AHC-
based positioning method is described in Fig. 2. 

C. Fuzzy C-Means Cluster-Based Positioning 
FCM has effectively been used in WLAN indoor 

localization [21]. Here we have used it for outdoor positioning 
using GMDT data. Its implementation steps are similar to that 
of the AHC-based fingerprint positioning. In this method in 
step 3 as shown in Fig. 2, we have added another criterion that 
if the number of selected GMDT samples is more than six than 
initial number of clusters assigned to FCM method is 6 
otherwise 2. FCM starts with an initial guess for the cluster 
centers, which are intended to mark the mean location of each 
cluster and it also assigns every data point a membership grade 
for each cluster. By iteratively updating the cluster centers and 
the membership grades for each data point, it moves the 
cluster centers to the right location. This iteration is based on 
minimizing the objective function for the partition of the 
selected GMDT data-set [22]: 

Jm(u,v) = i=1
c

k=1
nui,k

m Dk − vi
2   (8) 

where, Jm is the objective function, n is the number of 
samples in the data set, c is the number of clusters (1  c  n), 
ui,k is the element of partition matrix U of size (c x n) 
containing the membership function, vi is the center of the ith

1. Select GMDT Group According to the serving LTE BS ID of TestSam

2. Select GMDT samples which are Equal and Above the Matching 
Threshold for the TestSam IDs

3. Group Together RSSTS
LW values of TestSam and Selected GMDT 

samples and Perform AHC Clustering with Davies-Bouldin Criterion

4. Check Cluster Criteria: (i) Multiple Clusters are Created and (ii) The 
Cluster that Contains TestSam has Multiple GMDTs. If CC is fulfilled Go-
to Next Step 5, otherwise reduce Matching Threshold and Go-to Step 3

5. Select the Cluster which Contains the Test GMDT; then Estimate Test 
UE Position from mean x-y coordinates of the GMDTs of that Cluster

Fig. 2: Block-diagram of the AHC-based Positioning Method



                                     

cluster, and m is a weighting factor that controls fuzziness of 
the membership function. The matrix U is constrained to 
contain elements in the range of [0, 1] such that i=1

c uik = 1  
for each ui,k(1  k  n). The norm Dk − vi is the distance 
between the sample Dk and the clusters center vi . 

IV. EXPERIMENTAL RESULTS: OUTDOOR UE POSITIONING

Before the positioning phase we have processed the whole 
GMDT data-set by merging multiple samples into a single one 
which were recorded from the same x-y coordinate and also 
contain similar LTE BS and WLAN AP IDs. In order to avoid 
over-optimal results consecutive GMDTs have been grouped 
into chunks of 20 samples in sequence. Training and test data-
sets were created by randomly choosing such data chunks. Test 
results were derived from three different GMDT sets: The 1st

set contains 3 LTE and 4 WLAN signals, 2nd set consists of 2  
LTE and 5 WLAN signals and 3rd set is for 1 LTE and 6

WLAN signals. The number of training and test GMDTs were 
23080 and 2565 respectively. Results shown in Table I were 
obtained from 10 fold cross-validations for testing all GMDTs. 
The 1st and 2nd columns of Table I corresponds to the different 
LTE-WLAN sets and the matching threshold numbers and after 
that we can find the 68th and 95th percentile values of UE 
positioning error for each of the methods. The analyzed test 
GMDT percentage is attached to positioning error (PE) values 
for each of the methods. Table I shows that GCL method is 
capable of analyzing almost 100% of test GMDT and the PE 
values for any given data set remain the same for different MT 
values. The KNN and FCM perform better for MT-6 and 
similar results were obtained for MT-5 case as compared to that 
of the GCL method, both KNN and FCM have analyzed less 
percentages of test samples than that of GCL. Thus for a better 
comparison between the methods we have prepared Table II 
where the PE results of all four methods are calculated for 
common analyzed test GMDT samples as given in the last 
column of Table II. 

TABLE I. RESULTS OF GRFFP AND CRFFP METHODS USING ALL GMDT TEST DATA

LTE & 
WLA

N 
MT. 
No. 

GRFFP KNN AHC FCM 

68% PE 
(m) 

95%  
PE (m) 

Test 
GMDT 

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 
LTE:3 

& 
WLA
N:4 

6 17.89 49.17 99.52 12.95 40.34 63.12 9.34 33.66 19.05 12.35 38.16 30.02 
5 17.88 49.06 99.89 15.76 47.55 89.27 10.49 35.64 41.13 16.56 51.45 68.49 
4 17.89 49.05 99.99 16.86 50.29 98.02 12.60 42.30 55.96 18.51 56.83 91.21 
3 17.89 49.05 99.99 17.15 51.56 99.87 14.16 51.18 61.75 19.28 59.58 98.93 

LTE:2 
& 

WLA
N:5 

6 16.29 45.82 99.72 11.00 36.83 66.38 7.45 25.63 21.57 8.89 33.58 29.89 
5 16.30 45.85 99.86 14.88 44.75 90.92 7.87 26.88 45.78 13.48 43.46 69.89 
4 16.31 45.89 99.90 15.92 46.75 98.60 8.64 31.31 58.32 15.56 46.57 93.13 
3 16.33 45.92 99.99 16.15 47.20 99.87 9.13 33.87 62.35 16.11 48.25 99.09 

LTE:1 
& 

WLA
N:6 

6 15.28 43.32 99.57 9.75 33.25 64.03 7.27 21.38 24.16 7.80 28.64 29.42 
5 15.31 43.34 99.69 13.48 41.87 89.47 7.18 19.91 51.02 11.01 35.98 67.21 
4 15.31 43.34 99.83 15.02 45.56 98.61 7.49 22.41 65.09 13.37 42.91 92.60 
3 15.32 43.36 99.87 15.22 46.07 99.75 7.77 24.09 69.12 14.01 44.57 98.77 

TABLE II. RESULTS OF GRFFP AND CRFFP METHODS USING COMMON GMDT TEST DATA

LTE & 
WLAN 

MT. 
No. 

GRFFP KNN AHC FCM Common 
Test 

GMDT  
(%)

68%  
PE (m) 

95%  
PE (m) 

68%  
PE (m) 

95%  
PE (m) 

68%  
PE  (m) 

95%  
PE (m) 

68%  
PE (m) 

95%  
PE (m) 

LTE:3 & 
WLAN:4 

6 14.20 39.70 13.23 39.68 9.35 33.78 9.84 34.63 18.71
5 14.06 40.22 13.30 40.43 10.50 35.73 12.01 40.47 41.02 
4 15.27 41.99 13.74 41.51 12.61 42.32 13.55 44.03 55.92 
3 15.58 42.57 14.07 42.12 14.16 51.18 14.35 47.18 61.75 

LTE:2 & 
WLAN:5 

6 14.58 40.63 10.61 33.99 7.48 25.69 7.52 26.51 20.90
5 13.58 40.94 11.08 37.54 7.87 26.98 8.94 33.96 45.41
4 13.87 41.74 11.40 37.94 8.66 31.34 9.77 36.05 58.22
3 14.22 41.86 11.73 38.68 9.13 33.87 10.25 37.68 62.33 

LTE:1 & 
WLAN:6 

6 14.06 38.24 9.32 31.39 7.27 21.80 7.35 25.53 22.06 
5 13.14 38.00 9.73 32.78 7.18 20.16 8.08 27.71 49.56 
4 13.19 39.30 10.12 36.08 7.49 22.44 8.93 32.53 64.76
3 13.48 40.05 10.46 36.54 7.77 24.09 9.22 33.34 69.11



                                     

Here it is found that with the 1st GMDT set PE results of 
GCL and KNN are very similar. AHC and FCM have shown 
better positioning results for MT number of 5 and 6, but for 
MT-3 and MT-4 PEs are higher than that of GCL and KNN. 
For data set 2, KNN has reduced the PEs a bit in both the PE-
percentile values as compared to that of GCL; whereas FCM 
has shown further improvement in 68th percentile and 95th 
percentile of PE values than that of KNN method. With the 
same data set AHC has outperformed FCM based positioning 
performance. Also with data set 1, AHC based clustering has 
given the best positioning accuracy as compared the other 
methods. For MT-3 in data set 1 common analyzed test GMDT 
percentage was the highest 69.11 and in this case AHC method 
has shown an improvement in positioning accuracy of 42.3% 
and 39.8 % in the 68th percentile and 95th percentile values of 
PE as compared to that of the GCL method. These results 
indicate that in dense urban areas where multiple WLAN 
signals can be detected CRFFP is capable of delivering better 
outdoor UE positioning than GRFFP using data set 2 or 3 
having seven LTE and WLAN signals strength values. 

V. CONCLUSION

Here we proposed cluster-based RF fingerprinting methods 
for outdoor UE positioning using seven LTE and WLAN 
signals. Only seven LTE RSRP and WLAN RSSI signal 
strength values were used to perform a comparative study 
between the GRFFP and CRFFP methods. The cluster-based 
positioning reduces the search space by taking advantage of 
LTE cell-ID based searching technique. As a result CRFFP 
methods give faster UE positioning output with less 
computational cost. They do not need training signature 
formation during offline phase as compared to the 
conventional GRFFP method. Among the three CRFFP 
methods used in this research AHC based RF fingerprinting 
provided the best UE positioning accuracy using only serving 
LTE RSRP and six WLAN RSSI values. Hence as a cost-
effective real time RF fingerprinting method, AHC based 
positioning would certainly be a good choice for any cellular 
operator. 
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