Geographic Routing in Distributed Sensor Systems

without Location Information

Bin Yu
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
byu@cs.cmu.edu

Abstract - Geographic routing protocols have been
widely used in microsensor networks, however, they
cannot directly apply to distributed mobile sensor
systems as mobile sensors often do not know their
netghbors’ exact physical locations. In this paper we
consider geographic routing in distributed sensor sys-
tems without location information. We address the
problem by introducing a lightweight and distributed
virtual coordinate assignment protocol. We focus on
the effectiveness of routing algorithms for distributed
data fusion in the system and provide a detailed
analysis of several routing algorithms for a sensor
system with group mobility. Our simulation results
show that controlled data flows significantly increase
the probability of relevant data being fused.

Keywords: distributed sensor systems, data fusion, geo-
graphic routing.

1 Introduction

Distributed sensor systems of the near future are en-
visioned to consist of hundreds of UAVs (unmanned
aerial vehicles) or robots. These networked mobile sen-
sors play strong roles in military and civilian opera-
tions, e.g., battlefield surveillance, disaster search and
rescue [8, 12, 15]. One phenomenon in mobile sensor
systems is that raw data from each sensor usually has
low confidence. The raw data cannot be used directly
for team coordination and has to be fused with other
relevant data [10].

Various statistical inference techniques have been
studied for distributed data fusion in sensor systems,
however, these approaches do not consider the control
of data flows [11]. Uncontrolled data flows may cause
large amounts of conflicting plans and have severe ef-
fects on the performance of the whole system when mo-
bile sensors work together to conduct high-level tasks.
Thus, one crucial problem for sensor systems is how
to optimize routing strategies for in-network data fu-
sion [19], so that relevant data can be fused with small
communication overheads.

Geographic routing protocols have been widely used
in microsensor networks [22, 23|, but the effectiveness
of these protocols has not been fully studied in mobile
sensor systems. In existing geographic routing proto-

Katia Sycara
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.
katia@cs.cmu.edu

cols, e.g., GPSR, forwarding decisions are made locally,
based only on the node’s own position, the positions of
its neighbors, and the position of the destination [7].
While location awareness is of great importance for
data routing, geographic routing cannot directly ap-
ply to mobile sensors as they often do not know their
neighbors’ exact geographic locations. Determining ge-
ographic location needs to consume much energy and
bandwidth. Sometimes even if location information is
available, it cannot represent the exact physical loca-
tion of the mobile sensor.

Motivated by recent work on virtual coordinates
[13, 16], we consider geographic routing for data fu-
sion without location information. We introduce a
lightweight and distributed virtual coordinate assign-
ment protocol. Our virtual coordinate is based on the
hop distance and the overall connectivity graph of the
system. Unlike [16], we do not try to approximate
physical coordinates, so only a relatively small over-
head is needed to set up the logical coordinate. Also,
different from [13], we consider the topology as a graph
instead of a tree, since the hierarchical structure of a
tree tends to overload the root node and other nodes
at low levels of the tree.

Our work is closely related to [2], while they focus
on the performance of greedy routing in the virtual
coordinate and the physical coordinate, here we are
particularly interested in the effectiveness of routing
algorithms for distributed data fusion in the system.
In our approach, instead of routing the data to the
destination in a greedy manner, the data is routed to
increase the probability of relevant data being fused,
while minimizing communication overload. There is no
querying process and each node proactively forwards
the data to one of its neighbors in the virtual coordi-
nate. Moreover, each node has to exploit the locality
of sensor data and make its routing decision based on
local knowledge of itself and its neighbors.

In this paper we consider scenarios such as disaster
rescue and battlefield surveillance, where hundreds of
sensors move with group mobility [6] and each node
has a relatively fixed neighborhood in the logical coor-
dinate space. We provide a detailed analysis of several
routing algorithms for the purpose of sensor data fu-
sion in the system. We also study the robustness of the
routing algorithms to network dynamics such as node

failures and additions. The simulation results show
that relevant data is efficiently fused when sensors ex-
ploit both locality and relevance of sensor data during
the routing process.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes the relevant literature. Section 3
briefly describes the background of distributed sensor
systems and the construction of the virtual coordinate
space. Section 4 investigates the routing algorithms
for data fusion. Section 5 presents some experimental
results for the robustness and efficiency of the algo-
rithms. Section 6 discusses the main themes and some
directions for future research.

2 Related Work

Multisensor data fusion has been intensively studied
for a long time, where both data fusion and control al-
gorithms are centralized [3, 4, 20]. We will not discuss
the literature on multisensor data fusion since they fall
outside of the scope of this paper.

Research on distributed sensor data fusion has been
focused on statistical inference techniques, such as
[10, 11, 14, 17]. [14] investigates an optimum local fu-
sion detection threshold for hypothesis testing by local
sensors. [17] presents a Bayesian technique for decen-
tralized state estimation using particle filters. [10] and
[11] counsider distributed data fusion as a state esti-
mation problem using information filter (a variant of
Kalman filter). These approaches study detection and
tracking performance of distributed sensor systems,
but there is no control on data flows in the system.
Uncontrolled data flows may cause large amounts of
conflicting plans and have severe effects on the perfor-
mance of the whole system when mobile sensors work
together to conduct high-level tasks.

Many geographic routing protocols have been pro-
posed for wireless microsensor networks, e.g., GPSR
[7]. Geographic routing is scalable, but it requires
nodes know their precise locations. Recently, [13] and
[16] studied virtual coordinates for geographic routing
without location information. The idea is to assign
logical coordinates to each node and then use greedy
forwarding in the virtual coordinate space. These two
protocols work well even in the face of physical obsta-
cles, but both of them require relatively large setup
overhead in the forms of several rounds of floods or
iterations of relaxation.

Our work is closely related to [2], but we focus on the
effectiveness of routing algorithms for distributed data
fusion. We present a lightweight and distributed vir-
tual coordinate assignment protocol based on the hop
distance and the overall connectivity graph of the sys-
tem. Unlike [16], we do not try to approximate phys-
ical coordinates. Instead, we need a relatively small
overhead to set up the logical coordinate. Also, dif-
ferent from [13], we consider the topology as a graph
instead of a tree. The hierarchical structure tends to
overload root node and other nodes at low levels of the
tree. Moreover, the setup overhead in our protocol is
equivalent to that of determining the order of children

in the tree.

3 Preliminaries

In this section, we give some background of sensor data
fusion in distributed sensor systems and the construc-
tion of virtual coordinate space.

3.1 Background

Mobile sensors such as robots or UAVs (Unmanned
Aerial Vehicles) are frequently used in disaster search
and rescue, or battlefield surveillance, where hundreds
of robots or UAVs move together to search for trapped
victims or targets. For example, in military applica-
tions, hundreds of UAVs are deployed as a team in the
battlefield for target detection, tracking, and classifi-
cation [18]. These UAVs collaboratively explore un-
known regions and search moving, possibly evading
targets in the complex and dynamic environment [21].

A target Tk may be detected by multiple UAVs, but
each UAV cannot initialize its plans based on its own
raw sensor data about the target, e.g., engagement of
its missile with the target. ! The reason is that the
raw sensor data from a single UAV is uncertain and
noisy. Sometimes, a UAV with SAR (Synthetic Aper-
ture Radar) may even confuse friendly targets (780
tanks) with enemy targets (M1 tanks). Hence, the low
quality sensor data cannot be used directly for high-
level plans and has to be routed to other nodes for
fusion in the system [5].

Formally, the connectivity graph of mobile sensors is
modeled as a connected undirected graph G = (V, E),
where V' = {a,b, ...} is a set of sensor nodes and E con-
sists of edges between any two nodes a and b that can
communicate directly. N(a) is the set of a’s neighbors
and b € N(a) is any neighbor of node a. Also, each
node knows its immediate one-hop neighbors, but it
does not know their physical locations.

In this paper, we only consider a distributed sen-
sor system with group mobility [6]. This often hap-
pens in the scenarios of disaster search or battlefield
surveillance, where large numbers of robots or UAVs
maintain a desired shape (formation) while following a
desired trajectory.

In order to efficiently route the data for fusion, we
have to exploit two properties of sensor data in the
system.

e Relevance: We need to consider the relevance of
events when we route the data in the system. Here
two events are relevant if they are referring to the
same target.

e Locality: We also need to consider the locality of
data during the routing process. Locality means
sensors that detect relevant data are likely to be
close to each other in the system.

1We assume that each UAV only has the chance to scan the
target once due to its kinematic constraints.

3.2 Coordinate Construction and As-
signment

In this section we introduce a lightweight and dis-
tributed virtual coordinate assignment protocol. It in-
cludes constructing a virtual coordinate space for the
system and assigning a virtual coordinate (z,y,z2) to
each node during network initialization. The basic idea
is to find three boundary nodes as anchor nodes for X,
Y, and Z in a distributed manner, so we can assign the
coordinate to each node through triangulation. While
this is not part of our research contribution, we present
it here for completeness.

In [2] the authors give some heuristics on how to
choose the three anchor nodes X, Y, and Z, such that
they have high probability on the boundary of the net-
work and they are not too close to each other. The
whole process can be summarized as follows,

e One randomly selected node generates a W mes-
sage and its hop counter is initialized as zero. The
node is only used to select the other three anchors
X, Y, and Z. The counter for the W message is in-
creased by one by the forwarding nodes. If a node
gets more than one message, it will only forward
the W message with the smaller hop counter.

e After all nodes have received the W messages,
the nodes that have maximal hop counter of W
messages within a two-hop neighborhood consider
they are in the boundary of the network and gen-
erate X message with initial hop counter zero.
Similarly, the counter of X messages is increased
by one each time by forwarding nodes. If a node
receives more than one message, it will choose the
one with smaller hop counter of W message. 2

e The propagation Y and Z messages is similar to
X, but selection of the anchor of Y and Z needs
to satisfy some given rules. For example, we have
to choose Y anchor with maximal hop counter for
X message and the hop counter of W is greater
than a parameter v. In this case, we can ensure
that Y is not aligned with X and W. Otherwise,
if only the distance from X is considered to select
Y, it would be possible to have Y very close to W.

At the end of the process each node is assigned
with a virtual coordinate (x,y,z) based on its hop
distance to the anchors. Figure 1 shows an example
of coordinate assignment through triangulation, where
the three anchor nodes are with coordinates (0,1, 1),
(1,0,1) and (1,1,0).

Note that we measure the distance as hops, some
nodes are likely to have the same coordinates. We can
see that the hop distance for nodes with same coordi-
nates lies within a limited number of hops from each
other. In Section 5, we show that the coordinate sys-
tem can effectively support geographic routing for data
fusion in the system.

2Note that each X message is generated after a random time
in order to reduce the number of messages in the system.

0,1,1) (1,0,2)

Figure 1: An example of coordinate assignment
through triangulation.

3.3 Sensor Data

If sensor a detects a target Ty, it will generate an
event e; about target Tx. Here sensor a is also called
a source node. A set of events (e1,es,e3,...ep) are
relevant if they are referring to the same target,
where F is the total number of events for target
Tx. Formally, event e; can be denoted as a tuple
(sender, identity, p_location, v_location, TT L, pedigree),
where

e sender is the ID of the sensor that detects the
target. The ID could be predefined or a random
number chosen on a large range.

e identity is the decision about the target made by
the sensor.

e p-location is the physical location of the target Tk,
denoted as (4, s, 2;). °

e v-location is the location of the sensor that detects
the target Tk in the virtual coordinate space, de-
noted as (Z;, ¥i, 2i)-

o TTL (time-to-live) is the maximal number of hops
allowed for the event propagation in the system.

e pedigree is the list of nodes event e; has visited,
denoted as L. Note that pedigree is used to avoid
cycles during event propagation.

Note that fusing all relevant events is infeasible
since, sometimes, we may only know the range of F
for a given target and we do not know the exact num-
ber of F'. It is also unnecessary when the confidence
of fused data is already high. Therefore, we may only
need to fuse a subset of the events f if the number of
relevant events F' is big. The value of f depends on
the target type and the sensor, but for simplicity, we
just consider the case of f = 3 in this paper.

Moreover, we need to stop the propagation of the
rest of relevant events in the system. These redun-
dant events are harmful for high-level team coordina-
tion since they may induce conflicting plans. For ex-
ample, the same target could be engaged by multiple
sensors, which will waste the valuable resources and

3The physical location of a target is mainly used in the data
association process to determine if two events are referring to
the same target.

degrade the performance of the system. In Section 4
we will discuss how to control the redundant events
after f out of F' events are successfully fused in the
system.

4 Algorithms

This section describes routing algorithms for data fu-
sion in sensor systems. Instead of routing the data
to the destination in a greedy manner, the data is
routed to some nodes to increase the probability of
relevant data being fused, while minimizing communi-
cation overload.

Note that there are two properties of sensor data in
the system: locality and relevance. Next we describe
three routing algorithms with increasing effectiveness.

e random walks, which are the naive routing algo-
rithm and serve as the baseline for our study [9].

e path reinforcement algorithm, where sensors only
exploit the relevance of sensor data;

e path reinforcement algorithm with geographic
routing, where sensors exploit both locality and
relevance of sensor data.

In random walks, sensor node a with event e; first
decides if it will stop the propagation of e;, where 1 <
i < F. If not, sensor node a just forwards event e;
to one randomly chosen neighbor b € N(a). Once the
neighbor receives the data, it repeats the same process
until the event is successfully fused with other relevant
events or the TTL of the event reaches zero.

Random walks are simple and easy to implement,
but they are not efficient for data fusion as they do
not exploit any relationships or properties of events
and just pass events randomly in the system. Hence,
we design other two algorithms — path reinforcement
algorithm and path reinforcement algorithm with geo-
graphic routing.

4.1 Path Reinforcement Algorithm

The intuition behind path reinforcement algorithm is
that relevant events are likely to be fused earlier if they
will follow the same path after they meet. Specifically,
if sensor node a has sent an event e; to one of its neigh-
bors b before, it will send b any events e; if and only if
e; and e; are relevant.

Figure 2 shows an example of data flows in the sys-
tem using path reinforcement algorithm. The solid
lines correspond to directed communication channels
between sensor nodes. The arrows in dashed lines rep-
resent information flows of relevant events e;, ¢;, and
ej. Event e; and e; meet at node b and then they follow
the same path (event e; reinforces the path (b, c)). As
shown in Figure 2, the three events are fused at node
c.

From the figure it is easy to understand why path
reinforcement algorithm is more efficient than random
walks for data delivery. For example, if event e; and

Figure 2: An example of data flows in the system using
path reinforcement algorithm, where e;, e;, and e, are
three relevant events.

e; meet at node b and they continue to walk randomly
in the system, there will be a smaller chance that they
can meet again and be fused with event e at node c.

4.2 Path reinforcement algorithm with
geographic routing

In path reinforcement algorithm each node only con-
siders the relevance of sensor data and routes the data
in the connectivity graph. One way to exploit locality
of sensor data is to limit the distance that the data
is routed from the source node, so that the data can
meet other relevant data in the neighborhood with high
probability.

v e
RNUZAN /\

a c
O

€]

Figure 3: An example of data flows in the system
with and without geographic information (1) path re-
inforcement algorithm in the connectivity graph; (2)
geographical routing in the virtual coordinate.

Figure 3 describes an example of data routing,
where node b needs to consider the (virtual) geographic
locations of its neighbors when it makes the decision.
In Figure 3 two nodes a and ¢ have relevant data and
a is a neighbor of ¢. Node b may forward the data to
either ¢ or d in path reinforcement algorithm, but for-
warding to ¢ will increase the probability of fusing the
data generated from node c.

Hence, in each step, sensor node a needs to con-
sider both relevance and locality of sensor data when
it makes the decision of routing. A sensor will forward
event e; to one of its neighbors k according to path
reinforcement algorithm if node a routes one of rele-
vant events to k before. Otherwise, node a chooses k
according to the the minimal distance to the location
of source node (Z;, ¥;, ;). The distance d in the virtual

space is defined as follows,

d(k,e:) = \/(zx — 43)2 + (ye —)2 + (2 — £1)?

where (xg, yx, z1) and (&, ¥;, ;) are the coordinates
of the sensor k£ and the source node of event e;, re-
spectively. A sensor will choose one of two neighbors
randomly if a tie happens.

Obviously, the relevant data will be more efficiently
fused when sensors exploit both locality and relevance
of sensor data during the routing process. Another
issue is how to control redundant sensor data, so we can
minimize the communication overhead and conflicting
plans during the routing process.

The communication overhead for a set of events
(e1,€9,€3,...ep) is defined as follows,

F
c=_|L(e)]
i=1

where L(e;) is the pedigree of event e; and |L(e;)|
is the length of path for event e;.

One way to reduce communication overhead is to
allow some nodes to filter out redundant events after
they successfully fuse a subset of F' events. As we show
in Section 5, the mechanism is quite effective and can
filter out up to 5—10% redundant messages, depending
on the value of F' and the routing algorithm.

4.3 Network Dynamics

The topology of sensor systems may change over time
when some nodes fail and new nodes are added. When
either of them happens, we have to modify the coor-
dinates of some nodes in the virtual coordinate space.
The overhead here mainly includes detecting and prop-
agating changes in the logical coordinate space.

Node Failures Individual sensor tends to fail due
to either energy (fuel) depletion or hostile environment.
In either case, we need to be able to deal with failures
with minimal overhead. Obviously, we do not want the
anchors to flood the system, as these anchors may not
know when the network topology changes. The key is
how to detect the topology change locally, such that
each node can efficiently propagate the change in the
coordinate space.

Next we introduce the notion of upstream and
downstream nodes, with which we can restrict the
propagation to certain directions.

Definition 1 For any two nodes a and b, (4, Ya, Za)
and (2p,yp, 2p) are their coordinates. Node a is de-
fined as an upstream node of b if any of the following
conditions holds,

o T, < XIp, O

® Ya < Yp, OF

o 2, < 2

Node b is also called a downstream node of node a.

When a node a detects that one of its neighbors k
has failed, it first needs to adjust its coordinate if k is
an upstream node of a. In this case, the failed node
tends to increase the coordinate of node a since node
k may connect a to one of anchor nodes. Node a will
set its X coordinate as follows,

Ty =Te+ 1

where z. is minimal X coordinate of the rest of a’s
neighbors except for k. The update of Y and Z is
similar to X.

When node a changes its coordinate, the consistency
of other nodes’ coordinate can also be violated. To fix
this, node a needs to propagate its coordinate to any
of its neighbors who are downstream node of a. The
process continues until there is no further downstream
node.

Sometimes the anchor nodes may fail. In this case,
we need to select one from the neighbors of the anchor
node as the new anchor node. Assume that anchor
node X fails, then a neighbor of anchor X with mini-
mal distance to X will be selected as the new anchor
node for X, e.g., node a. The coordinate of a is up-
dated as x, = x4, — 1. Moreover, node a propagates its
new coordinate to all of its downstream nodes.

New Nodes For many applications, it is desirable
to add new nodes into the system. The new nodes may
replace failed nodes, or to improve the sensor coverage
area.

To join the system, a new node needs to first find
a small number of nodes in the system as its neigh-
bors (these neighbors are in the radio range of the new
node). The question is how to assign the coordinate to
the new node after it gets the coordinates of its neigh-
bors. One simple way is to allow the new node to share
the same coordinate with one of the neighbors. This
may degrade the performance of geographic routing
sometimes, but this minimizes the overhead of propa-
gating the changes in the virtual space. The update of
all downstream nodes of the new added node can be
delayed when a node failure happens in the system.

However, when more nodes are added into the sys-
tem, the anchor nodes may not be on the boundary
of the network. This requires to initialize the anchor
nodes again in the system. Time delay and commu-
nication overhead are two issues we need to consider.
Unfortunately, it is difficult to achieve both goals. One
way is to trade time for communication overhead, so
we can reduce the number of broadcasts for selecting
anchors for X, Y, and Z. The idea is that we can de-
lay the generation of X messages for a random time, so
some of them do not have to broadcast to other nodes
in the system.

5 Experiments

In this section, we empirically study the routing algo-
rithms for data fusion in a UAVs network. The UAVs
are used to search for moving, and possibly evading
targets in a hazardous environment. We do not con-
sider packet loss in our simulation environments. The

topology is a random network of 100 nodes, each of
which has, on average, six neighbors, if not specified.

In each iteration of the simulation, a random span-
ning tree is chosen in the system. The nodes on the
tree have a set of relevant events and they propagate
the events according to different algorithms.

Besides communication overhead, another main
metric in our study is the probability of relevant data
being fused, or probability of fusion. Formally, for a set
of relevant events (e1, e, €3,...ep), the probability of
fusion is defined as follows

H
Dz Si

b= H

where s; is one if f events are successfully fused at
iteration i. Otherwise s; = 0. H is the total number
of iterations.

We first assume there is a a given set of relevant
events, e.g., F = 5, and we study the probability
of fusion for random walks, path reinforcement al-
gorithm and path reinforcement algorithm with geo-
graphic routing. And then we look at some practi-
cal scenarios such as a UAVs network, where the total
number of events may change during the search pro-
cess. The results presented below are averaged over
1000 iterations.

5.1 Probability of Fusion

In the first experiment we study the relationship be-
tween probability of fusion and the hop number.

random walks —+—
path reinforcement algorithm --->¢---
path algorithm with routing -

08

0.6 -

probability
X %

04

0.2 -

hops

Figure 4: Probability of fusion for random walks, path
reinforcement algorithm and path reinforcement algo-
rithm with geographic routing, where the hops number
is between one to six.

Figure 4 compares the probabilities of fusion for
three routing algorithms, where the hops number is
between one to six. We can find that random walks
are quite easy to beat since they do not consider ei-
ther locality or relevance between events. Path rein-
forcement algorithm performs significantly better than
random walks, where path reinforcement algorithm at
least triples the probability of fusion compared with
random walks.

We also study the effects of geographic routing for
data fusion in the system. The results indicate that

geographic routing is quite effective for sensor data fu-
sion. The scheme increases the probability of fusion for
path reinforcement algorithm by 5% when the hop of
events is greater than three. This is very impressive as
totally the data is only allowed to propagate six hops
and the first two hops are in the neighborhood of the
source node.

5.2 Network Density

In this section we study whether the density of the
network affects the probability of fusion. For example,
each node of the network may have 4, 6, and 8 neigh-
bors on average. Apparently, density has limited affect
on the probability of fusion for random walk and path
reinforcement algorithm as both of them work indepen-
dently of the network density, as long as the network
is connected.

1

density =4 —+—
density =6 --->---
density =8 ----¥:-

08

06

probability

0.4

02 A

hops

Figure 5: Probability of fusion for a network with dif-
ferent densities (only for path reinforcement algorithm
with geographic routing)

One question is whether the density of the network
will affect the probability of fusion for path reinforce-
ment algorithm with geographic routing. Figure 5
shows that there are some slight differences for the
probability of fusion when the density of the network
is different. We can find that the probability of fu-
sion tends to decrease as we increase the network den-
sity from six to eight. The reason is that geographic
routing becomes less effective for high network density,
as many nodes share same coordinates in the virtual
space. Hence, we choose average degree six as network
density for the rest of our experiments.

5.3 Dynamics of the Number F

In the above two experiments we evaluate the proba-
bility of fusion for a fixed number of relevant events.
In practice, the total number of relevant events F may
change when many UAVs cooperate to search targets
in the environment. However, the number cannot be
arbitrarily large as the target may be destroyed. More-
over, each target may be detected by different sensors
at different timestamps. This is because there is some
distance among UAVs to avoid collisions and a UAV
needs some time to reach the same target after another
UAV flies over the target [1].

For simplicity, we assume the following parameters,

e Once a target is detected by a sensor, the target is
detected by one additional sensor after each sim-
ulation round.

e An event will be propagated three hops in the sys-
tem during each simulation round.

o After the events are fused, it will take another two
rounds to destroy the target.

10 4

Total number of events
&

Max F Aw F Min F

O Random Walks
B Path Reinforcement Alg
O Path Reinforcement Alg with Geographic Routing

Figure 6: Numbers of relevant events for a target, av-
eraged over 1000 iterations.

Figure 6 describes the number of relevant events for
a target, where each event is propagated at most six
hops. We measure the maximal, minimal, and average
numbers of events for three routing algorithms. Note
that the number here is equal to the number of sensors
detected the target. From the figure it is clear to see
that, for path reinforcement algorithm with geographic
routing, the target is destroyed after it was detected by
about seven sensors. As expected, the average number
for random walks is almost doubled, where the target
needs to be detected by about 13 sensors. Intuitively,
this is because that sensors using path reinforcement
algorithm with geographic routing can effectively fuse
the data together and initialize the plan of target en-
gagement earlier than using random walks.

5.4 Messages Filtering

60

50 1

40 4

301

201

10 4

Random walks Path Reinforcement Alg Path Reinforcement Alg

with Geographic Routing

@ #messages B #messages after fitering

Figure 7: Number of messages during the data fusion
process, averaged over 1000 iterations.

After an event is generated by a sensor, it is allowed
to propagate by a maximal hop number, e.g., TTL =

6. However, when any three relevant events are fused
by any node in the system, we would like to stop the
propagation of the rest of events. This would reduce
the traffic and the number of conflicting plans. One
way to address this problem is to allow a node to filter
other relevant events after the node fuses a subset of
events, e.g., f = 3. Figure 7 shows the number of
messages during the data fusion process. Note that any
node k& may stop routing event e; if it has fused other
three relevant events. Because of the role of message
filtering, the number of messages is reduced up to five
to ten percent without any additional communication
overhead.

5.5 Effects of Node Failures

30

254

20 4

154

p |_‘

g B
10 0

2 30 40

Average F

@

Percentage of node failures

@ Awerage F

Figure 8: The effects of node failures on the total num-
ber of events for path reinforcement algorithms with
geographic routing

In the last experiment we test the effects of node
failures on the total number of events for path rein-
forcement algorithms with geographic routing, where
about ten to forty percent nodes fail. Figure 8 sug-
gests the average number F' could become large when
many nodes fail. This is due to the network partition
problem. Some data is isolated somewhere in the net-
work and they cannot be routed to other nodes. In
future work, we plan to address this problem by al-
lowing the system to self-organize when the network
density drops.

6 Conclusion

In this paper we present a virtual coordinate-based
routing algorithm for data fusion in distributed sen-
sor systems. Our algorithm only requires each node
to keep state only about its neighbors and does not
require geographic location information. The empir-
ical results show that our algorithm minimizes com-
munication overheads, while still guarantees the high
probability of data fusion.

In future work, we intend to continue the study of
our algorithm by using more realistic link layer mod-
els and UAV kinematics such as message delay and
flying speed. Additionally, we plan to study other mo-
bility models for sensor systems and their effects on
sensor data fusion. For example, most nodes have rela-
tively stable neighborhood and a few of them move out

of their neighbors’ radio range. Moreover, we would
like to explore the effectiveness of our routing algo-
rithms for high-level team coordination, e.g., task and
resource allocation. Both problems have been inten-
sively studied in the area of multiagent systems, but
very few of them consider location awareness in team
coordination [19].

Acknowledgements

This research has been sponsored in part by
AFRL/MNK Grant F08630-03-1-0005 and AFOSR
Grant F49620-01-1-0542.

References

[1] John Bellingham, Michael Tillerson, M. Alighan-
bari, and Jonathan P. How. Cooperative path
planning for multiple UAVs in dynamic and un-

certain environments. In Proceedings of the 41st
IEEE Conference on Decision and Control, 2002.

[2] Antonio Caruso, Stefano Chessa, Swades De, and
Alessandro Urpi. GPS free coordinate assignment
and routing in wireless sensor networks. In Info-
Com, 2005.

[3] Zeineddine Chair and Pramod K. Varshney. Op-
timal data fusion in multiple sensor detection sys-
tems. IEEE Transactions on Aerospace and Elec-
tronic Systems, 22(1):98-101, 1986.

[4] David L. Hall and James Llinas. An introduction
to multisensor data fusion. In Proceedings of the
IEEE, pages 6-23, 1997.

[5] David L. Hall and Sonya A. H. McMullen. Math-
ematical Techniques in Multisensor Data Fusion.
Artech House Publishers, second edition, 2004.

[6] Xiaoyan Hong, Taek Jin Kwon, Mario Gerla, Lihui
Gu, and Guangyu Pei. A mobility framework for
ad hoc wireless networks. In Proceedings of the

Second International Conference on Mobile Data
Management, pages 185-198, 2001.

[7] Brad Karp and H. T. Kung. GPSR: Greedy
perimeter stateless routing for wireless networks.

In MobiCom, 2000.

[8] Victor Lesser, Charles Ortiz, and Miland Tambe,
editors. Distributed Sensor Networks: A Multi-
agent Perspective. Kluwer Academic Publishers,
2003.

[9] Laszlo Lovasz. Random walks on graphs: A sur-
vey. In T. Szonyi D. Miklos, V. T. Sos, edi-
tor, Combinatorics, Paul Erdos is Fighty. Janos
Bolyai Mathematical Society, 1993.

[10] Alexei Makarenko and Hugh Durrant-Whyte. De-
centralized data fusion and control in active sensor
networks. In Proceedings of the Seventh Interna-

tional Conference on Information Fusion, 2004.

[11] James Manyika and Hugh Durrant-Whyte. Data
Fusion and Sensor Management: A Decentralized
Information- Theoretic Approach. Ellis Horwood,
1994.

[12] Robin R. Murphy. National science foundation
summer field institute for rescue robots for re-
search and response. AI Magazine, 25(2):133-136,

2004.

[13] James Newsome and Dawn Song. GEM: graph
embedding for routing and data-centric storage in
sensor networks without geographic information.

In SenSys, 2003.

[14] Ruixin Niu, Pramod K. Varshney, M. Moore, and
Dale Klamer. Decision fusion in a wireless sensor
network with a large number of sensors. In Pro-
ceedings of the Seventh International Conference

on Information Fusion, 2004.

[15] H. Van Dyke Parunak, Sven A. Brueckner, and
James J. Odell. Swarming coordination of multi-
ple UAV’s for collaborative sensing. In Proceedings
of the Second AIAA Unmanned Unlimited Sys-
tems Technologies and Operations Aerospace Land

and Sea Conference and Workshop, 2003.

[16] Ananth Rao, Sylvia Ratnasamy, Christos Pa-
padimitriou, Scott Shenker, and Ion Stoica. Geo-
graphic routing without location information. In

MobiCom, 2003.

Matt Rosencrantz, Geoffrey Gordon, and Sebas-
tian Thrun. Decentralized sensor fusion with dis-
tributed particle filters. In UAI 2003.

Allison Ryan, Marco Zennaro, Adam Howell, Raja
Sengupta, and J. Karl Hedrick. An overview of
emerging results in cooperative UAV control. In
Proceedings of 43rd IEEE Conference on Decision
and Control, 2004.

[19] Paul Scerri, Yang Xu, Elizabeth Liao, Justin Lai,
and Katia Sycara. Scaling teamwork to very large

teams. In AAMAS, pages 888-895, 2004.

[20] Stelios C.A. Thomopoulos, R. Viswanathan, and
D. C. Bougoulias. Optimal decision fusion in
multiple sensor systems. IEEE Transactions on
Aerospace and Electronic Systems, 23(5):644-653,

1987.

[21] Patrick Vincent and Izhak Rubin. A framework
and analysis for cooperative search using UAV
swarms. In Proceedings of ACM Symposium on

Applied Computing, 2004.

[22] Guoliang Xing, Chenyang Lu, Robert Pless, and
Qingfeng Huang. On greedy geographic routing
algorithms in sensing-covering networks. In Mo-

biHoc, pages 31-42, 2004.

[23] Feng Zhao and Leonidas Guibas. Wireless Sensor
Networks: An Information Processing Approach.

Morgan Kaufmann Publishers, 2004.

