
Antagonistic Agents in the Internet:
Computer Network Warfare Simulation

Igor Kotenko

St. Petersburg Institute for Informatics
and Automation,

39, 14th Liniya, St. Petersburg, Russia
ivkote@iias.spb.su

Alexander Ulanov
St. Petersburg Institute for Informatics

and Automation,
39, 14th Liniya, St. Petersburg, Russia

ulanov@iias.spb.su

Abstract - In the paper the approach for the simulation
of counteraction between malefactors and defense
systems in the Internet is considered. We try to model
these antagonistic actors as software agents’ teams. To
simulate the teams’ warfare it is proposed to use various
computational models (from analytical and packet-
based to virtual and testbeds). The main attention is
drawn to the application of agent-oriented simulation
based on the packet-based imitation of network security
processes. Such approach provides acceptable fidelity
and scalability in representing the attack and defense
mechanisms. The approach is examined on an example
of “Distributed Denial of Service” attacks and defense
simulation. We consider different phases of antagonistic
teams’ operations – learning, decision making and
counteracting, including the adaptation of one team to
the actions of opposite team.

Keywords: Network centric warfare, software and
communications technology, agents, security, simulation.

1 Introduction

Today we are the witnesses of growing dependence of all
sides of our vital functions from the Internet and other
information technologies. The further use of these
technologies becomes impossible without an appropriate
solution about adequate security mechanisms.
The Internet is constantly influenced now by malefactors’
attacks (viruses, worms, etc.). These attacks often
succeed. So, the current state of counteraction between
malefactors and defense systems can be characterized as
“a game of network cats and mice” [19].
The malefactors-professionals to achieve their goals in a
cyber-environment can use sophisticated strategies for the
realization of different security threats. These strategies
can contain a set of various actions: (1) Gathering
necessary information, detection of vulnerabilities and
applied defense tools; (2) Investigating methods to
overcome defense; (3) Suppression, bypass or deception
of defense systems; (4) Exploiting vulnerabilities and
accessing resources, privilege escalation, and realizing
threats; (5) Hiding the tracks of activity and creating
“backdoors”.
Therefore, computer network defense in present
conditions needs to fulfill in real-time a complex of

different measures: (1) Implementation of defense
mechanisms that correspond to the defined security policy
(including proactive attack prevention, malefactor
disinformation, hiding and camouflage of important
resources and processes, etc.); (2) Gathering and analysis
of data about the state of computer system due to
information processing from different sources;
(3) Detection of anomaly activity, not legitimate actions,
attacks and intrusions; (4) Prediction of intentions and
possible malefactor actions; (5) Direct response to the
intrusions, including malefactor’s misleading due to false
components to exposure and define his (her) goals;
(6) Reflexive management of malefactor’s behavior,
reinforcement of critical defense mechanisms;
(7) Elimination of intrusion consequences, discovered
vulnerabilities and adaptation of defense system to further
intrusions.
Unfortunately the present theoretical basis for information
security in large-scale systems does not allow researchers
to formalize adequately the mentioned set of processes.
Though the researchers can represent particular defense
mechanisms, the understanding of security components as
a holistic system is a very difficult task. This
understanding depends on many dynamical interactions
between particular security processes and cyber-
counteraction between different antagonistic elements. It
is especially right, taking into account the present
evolution of the Internet into decentralized distributed
environment where a huge number of cooperating and
antagonistic software agents exist and interact.
Let us examine the problem of comprehensive
investigation of information security processes on an
example of warfare between malefactors (realizing one of
the most critical classes of computer attacks –
“Distributed Denial of Service” (DDoS)) and defense
mechanisms against these attacks.
To start DDoS attack a malefactor needs to compromise
many hosts (zombies) to execute on them the Denial of
Service software that is targeted to some victim hosts. The
principal part of such attacks consists in sending to the
victim a large amount of packets (UDP and ICMP flood,
Smurf, Fraggle), too long packets (Ping of Death), the
incorrect packets (Land), the large amount of laborious
requests (TCP SYN), etc. [18].
The design and implementation of effective DDoS
defense system is a very complicated problem. The
effective defense includes the mechanisms of attack

prevention, attack detection, tracing the attack source and
attack protection. Adequate victim defense can only be
achieved by the cooperation of different distributed
components. So, the DDoS problem requires a distributed
cooperative solution which involves a set of defense
components [18].
Our goal is to suggest a common agent-based approach
for the investigation and elaboration of defense methods
and to produce well-grounded recommendations on the
choice of defense mechanisms that are the most efficient
in particular conditions. The rest of the paper is structured
as follows. Section 2 outlines the common approach for
simulation. Section 3 describes antagonistic agent teams
counteracting in the Internet to realize attacks and
defense. Section 4 presents the software environment
developed for simulation. Section 5 demonstrates an
example of warfare between agent teams including phases
of agent learning, decision making and acting. Conclusion
outlines main results and future work guidelines.

2 Simulation approach

We try to use the agent-oriented approach for simulation
of security processes in the Internet. It supposes that the
cybernetic counteraction is represented as the interaction
of different teams of software agents. The aggregated
system behavior becomes apparent by means of local
interactions of particular agents in dynamic environment
that is defined by the model of computer network.
We distinguish at least two agent teams: the team of
agents-malefactors and the defense team. The agents from
the same team collaborate to achieve the joint intention (to
realize the threat or to defense the network).
It is assumed that competing agents gather information
from different sources, operate with fuzzy (or
probabilistic) knowledge, forecast the intentions and
actions of opponent, estimate possible risks, try to deceive
each other, and react on opponent’s actions.
The choice of behavior for each team depends on the
chosen goal of functioning. The choice of every step of a
team behavior is defined dynamically depending on the
opposite team actions and the state of environment.
Each team acts in the conditions of limited information.
Every team member might have different information
about actions done by other team members. Therefore, the
model of agent behavior must be able to represent the
incompleteness of information and the possibility of
accidental factors. Besides, the agent’s behavior depends
on information that the team has and on its distribution on
the set of particular agents of the team [3].
The models of agent’s functioning are to foresee, what
each agent knows, what task has to be solved and to
which agent it must address its request to receive such
information if it is outside of its competence. The
messages of one agent are to be represented in such terms
that are understandable by other agents.
The use of ontologies is the one of the most perspective
approaches to structure the distributed knowledge of
agents. As for every application domain the information
security ontology represents the partially normalized set
of notions that are to be used by other agents. Besides the

relation of partial order the nodes of this structure have
other relations peculiar to the application domain. The
given ontology defines the subset of notions that various
agents use for cooperative solving of stated tasks. Each
agent uses a certain part of application domain ontology.
Each agent’s specialization is represented by a subset of
ontology nodes. Some of nodes can be shared by a pair or
more of agents. Usually only one of these agents has the
detailed description of this node. Exactly this agent is the
owner of the corresponding knowledge base fragment. At
the same time some part of the ontological knowledge
base is shared for all agents. This part is to be the shared
context (shared knowledge) for agents.
It is supposed that agents are to be able to realize the
mechanisms of self-adaptation and evolution during the
functioning process. The team of agents-malefactors
evolves with the aid of generating new instances and
types of attacks and attack scenarios to overcome the
defense subsystem. The team of defense agents adapts to
the malefactors’ actions by changing the security policy
and forming new instances of defense methods and
profiles.
The strategies of agents’ functioning can be represented
by various formalisms, e.g. on the basis of a family of
stochastic attribute grammars (and its interpretation by
state machines) and hidden markov models.
The concept model of cybernetic agents’ counteraction
includes:
(1) Ontology of application domain containing application
notions and relations;
(2) Protocols of teamwork (for the malefactors’ team and
the defense team);
(3) Models of individual, group and team behavior of
agents;
(4) Communication component for agent message
exchange;
(5) Models of environment – the computer network,
including topological and functional components.
It is proposed to use a family of various models to
research the processes of cybernetic counteraction.
The choice of particular models depends on the necessary
fidelity and scalability of modeling and simulation. For
example, analytical models let imitate the global processes
happening in Internet (for example, virus epidemics). But
these models describe modeled processes only on an
abstract level. Packet-level simulation gives the
opportunities to imitate proceeding processes with high
fidelity. It allows to represent the attack and defense
actions as packet exchange which precisely specifies the
functioning on data link, network, transport and
application layers. The greatest fidelity is archived with
the hardware testbed. But it succeeds in modeling the
sufficiently limited fragments of agents’ interactions.
The approach realized in the paper is based on packet-
level simulation using tools for network processes
imitation as basic level of the simulation environment.
The following studies are used as the basis for the
modeling and simulation of malefactors and defense
systems counteraction in the Internet: agent-oriented
simulation; agent teamwork; reasoning systems based on
forecasting of opponent intentions and plans; reflexive
processes; game theory; modeling and simulation of

networks attacks; security processes modeling; adaptive
systems and evolutionary computation.
The main basis for the research is the agent teamwork
theory. There are three well-known approaches to the
formalization of the agent teamwork – joint intentions
theory [4], shared plans theory [10] and the hybrid
approaches [12, 21] which use the combination of joint
intentions and shared plans theories. A lot of teamwork
approaches are implemented in various multi-agent
software, e.g. GRATE*, OAA, CAST, RETSINA-MAS,
COGNET/BATON, Team-Soar, etc.
Another fundamental component of the research is
represented by the studies in the area of reasoning systems
about opponent intentions and plans on the basis of
current situation estimation [2, 14, 24, 25]. There were
published the studies on determining the malefactor’s
plans during the intrusion detection [7, 8]. It is proposed
to use the ideas of agent plans recognition on the basis of
stochastic formal grammar recovery algorithms [9].
The important components in this research are the
methods of reflexive processes theory [17], game theory
[3] and control in conflict situations [5].
Authors used the methods of agent actions scenario
specification which are based on the stochastic attributive
formal grammars [9]. These methods are correlated with
the colonies of cooperative distributed grammars and
grammar models of multi-agent systems [15].
The teams of malefactors and defense agents are to adapt
to hardware and software reconfiguration, traffic changes
and new types of defense and attacks on the basis of past
experience. Therefore it is important to take into account
the present studies in the area of adaptation and self-
learning of agents [1, 11].
The approach for teamwork proposed in the paper is
based on the joint use of the elements of joint intentions
theory, shared plans theory and hybrid approach.
The agent teamwork is assumed to be organized due to the
shared plan of actions with the following features [16]:
(1) The group plan demands the agent team to come to
agreement to fulfill the set of given instructions;
(2) Agents have to take the commitment relative not only
to the individual actions but to the actions of other agents
and to the actions of the whole group;
(3) The plan of group activity might include the plans of
individual agents for the given action and the subgroup
plans;
(4) During teamwork realization the agents have to
achieve the agreement with the instructions due to
communications. They also have to coordinate their
intentions.
The structure of agent team is described in terms of group
and individual roles hierarchy. The leaves of hierarchy
correspond to the roles of individual agents, the
intermediate nodes – to the group roles.
The specification of action plans hierarchy is made for
every role. The following elements are defined for every
plan: initial conditions, when the plan is offered for
fulfillment; the conditions with which the plan stops being
fulfilled; actions executed on the team level as a part of
the shared plan. The joint activity is obviously expressed
for the group plans.
The team members have the shared mental model. Agents
can create the “snapshots” of mental state of the whole

team due to joint intentions on the different abstract
levels. The hierarchy of intentions is defined jointly by the
team members in order to achieve the common goal. It is
the consequence of agent commitments with each other.
The mechanisms of agent interaction and coordination are
based on the three groups of procedures [21, 16]:
(1) providing the consistency of actions;
(2) agents’ functionality monitoring and recovery;
(3) communication selectivity support (to choose the most
“useful” communication acts).

3 Agent teams

3.1 Attack agents

The agents are divided into two classes: “daemon” and
“master”. Daemons are attack executors. Master
coordinates them.
On the preliminary stage, daemons and master are
deployed on available (already compromised) hosts. The
important parameters are the quantity and “distribution”
of agents. Then the phase of team establishing takes place.
Daemons send to master the messages with information
that they are alive and ready to work. Master stores the
information about team members and their status. The
malefactor sets the common team goal – to start the DDoS
attack in the given moment of time. Master receives the
attack parameters. Its goal is to send it to all available
daemons. Then daemons begin to act. Their local goal is
to execute the master’s instruction. They begin to send
attack packets to the given host in the given mode. After
that it is believed that the team goal is fulfilled on this
stage. Master examines daemons periodically to know that
they are workable. Master controls the given attack mode
by receiving the replies from daemons. When a daemon
does not answer, master decides to change attack
parameters. For example, it can send the commands to
change the attack intensity to all or particular daemons.
Daemons can execute the attack in several modes. This
influences on the possibility of defense team to detect and
block the attack and to trace and defeat the attack agents.
The mode is specified by the intensity of packet sending
(packets per second) and the method of spoofing of sender
IP address (“IP spoofing”). The method of spoofing may
be as follows:
(1) Without spoofing (“no”) – the real address of host
(where daemon is deployed) is used;
(2) “Constant” – an address is randomly chosen, then it is
used for sending the attack packets;
(3) “Random” – with every new attack packet a new
address from the given range of addresses is randomly
chosen. This range does not intersect with the range of
addresses used in the given network;
(4) “Random real” – with every new attack packet a new
address from the given range of addresses used in the
network is randomly chosen.
Malefactor can stop the attack giving to master the
command “stop the attack”. Master resends this command
to daemons, and they stop the attack.

3.2 Defense agents

In accordance with general approach there were chosen
the following defense agent classes [16]: initial
information processing (“sensor”); secondary information
processing (“sampler”); attack detection (“detector”);
filtering (“filter”); investigation (“investigator”).
In the initial moment of time the defense agents are
deployed on the hosts corresponding to their roles: sensor
and sampler – on the way of traffic to the defended host;
detector – on any host of defended host subnet; filter – in
the entrance to the defended host subnet; investigator – on
any host outside of defended host subnet.
The main goal of defense team is to resist to DDoS attack.
Detector watches on the goal fulfillment.
Sensor processes information of network packets and
collects statistical traffic data for the defended host.
Sensor calculates the amount of traffic (bits per second –
BPS) and determines the addresses of hosts that make the
largest traffic. Its local goal is to give that data to detector
every k seconds.
Sampler processes the network packets and creates the
model of normal functioning for the given network (in the
learning mode). Then in normal mode it analyses and
compares the traffic with the model of normal traffic. It
picks out the addresses of hosts that do not correspond to
the model and sends them to detector. The following
defense methods are used in the experiments described in
the paper: Hop counts Filtering (HCF), Source IP address
monitoring (SIPM) and Bit per Second (BPS).
The detector local goal is to make a decision about the
beginning of attack on the basis of sensor and sampler
data. For example, if the BPS parameter for any address
exceeds the given threshold, it is believed that attack
happens. Detector sends the list of addresses to filter and
investigator. That are the addresses from sensor that have
BPS more than the given maximum and all addresses
received from sampler.
Filter local goal is to filter the traffic on the basis of
detector data.
Investigator goal is to trace and defeat the attack agents.
After receiving the message from detector it examines the
received addresses for the presence of attack agents and
tries to defeat them. When detector decides that attack is
stopped (on the basis of sensor and sampler data), it is
believed that the team goal is fulfilled on this stage.
The methods used by sampler are as follows.
Hop counts Filtering (HCF) [13]. It is used the
assumption that the packets from the same subnet pass
through the same hops on the way from sender to
receiver. The count of hops is estimated due to the packet
TTL field. It is decremented on each router. The initial
value of it can be 30, 32, 60, 64, 128 or 255. The special
table is created in the learning mode. The table is formed
on basis of requests to the defended host. It consists of IP
addresses grouped by their hop count. The system
calculates the hop count of incoming packet and compares
it with the given value in the normal mode. If the count of
hops differs that the packet is dropped.
Source IP address monitoring (SIPM) [23]. The
assumption is used that in the beginning of attack there
are a lot of packets which are sent from new IP addresses

and directed to the defended host addresses. There is
created the table of legitimate addresses in the learning
mode based on clients’ requests. Both in normal and
learning modes the system calculates the amount of new
IP addresses for the given interval dt with the given shift
tshift. This means that the amount is calculated every tshift
seconds for the previous dt seconds. In the learning mode
the maximum value (threshold) of new addresses amount
is estimated. Then, in normal mode, if the amount of new
addresses stays lower than the threshold, these addresses
are stored. If the amount exceeds the threshold during
several intervals (this type of aggregation is called
cumulative sum method, CUSUM), then packets from
new addresses are dropped.
Bit per Second (BPS). It is used the assumption that
traffic from one IP address should not exceed some
critical threshold. In the learning mode it is calculated the
amount of transmitted bits per second (BPS) during the
given interval for every client requesting defended host.
The greatest BPS value (threshold) is determined. In the
normal mode if the BPS parameter for some address
exceeds the determined threshold then packets from this
host are dropped. This parameter is calculated every tshift
seconds for previous dt seconds.
The main parameters for sampler are threshold values as
well as tshift and dt for SIPM and BPS. The key
parameter for SIPM is also the maximum amount of
intervals during which the threshold was exceeded.

4 Simulation environment

We developed our simulation environment using
OMNET++ INET Framework [22].
The example of multi-window user interface of the
simulation environment is depicted in Figure 1. At the
basic window of visualization (Figure 1, at upper right), a
simulated computer network is displayed.
The window for simulation management (Figure 1, at
bottom right) allows looking through and changing
simulation parameters. It is important that you can see the
events which are very valuable for understanding attack
and defense mechanisms on the time scale. The time scale
is depicted above windows with the events description.
Corresponding status windows (on top of Figure 1, in the
middle) show the current status of agent teams. It is
possible to open different windows which characterize
functioning (the statistical data) of particular hosts,
protocols and agents, for example, at the bottom left of
Figure 1, the window of one of the hosts is displayed.
At the basic window of visualization (Figure 2), a
simulated computer network is displayed. The network
represents a set of hosts and channels. Hosts can fulfill
different functionality depending on their parameters or a
set of internal modules. The routers are labeled with the
sign “ ”. Attack agents are deployed on the hosts
marked with red color. Defense agents are located on the
hosts marked with green. Above the colored hosts there
are the strings that indicate the corresponding state of
deployed agents. The other hosts are the standard hosts
that generate the generic network traffic.

The hosts are connected with the channels. Their
parameters can be changed. They are as follows: “delay”
– delay of packets propagation; “datarate” – the speed of
packets transmission.
During agent design and implementation there were used
the elements of abstract FIPA architecture [6]. The main
idea of such representation is to provide the interaction of
agents and the ability of agents’ reuse. Such system
description gives the possibility to see the correlations
between the main elements of agent-based system.
There were used the following elements of the abstract
architecture for the agents in the developed system:
communication language, transport layer, agent directory.
The implementation of interaction language is needed for
all agents to let them transmit the messages. Agent
directory is needed for the agents “master” and “detector”
that coordinate the activity of agents in theirs teams.
Daemon needs implementation of two transport
components (for communications and attacks). The agent
of filtering needs the implementation of network layer to
let it apply filtering rules. Agents “sensor” and “sampler”
are to have the network layer also to let them process and
collect the data, for example, to create the model of
normal traffic.
Agents are deployed on the hosts in the simulation
environment. Their installation is fulfilled by connecting
to the modules serving the transport and network layers of
protocol stack simulated in OMNeT++ INET Framework.
Each network for simulation consists of three sub-
networks: (1) the subnet of defense where the defense
team is deployed; (2) the intermediate subnet where the
standard hosts are deployed. They produce the generic
(normal) traffic in the network including the traffic to
defended host; (3) the subnet of attack where the attack
team is deployed.
The subnet of defense (Figure 2, the hosts highlighted
with green) consists of five hosts. The following agents

are deployed on the first four hosts: detector, sampler,
filter and investigator. The web-server which is under
defense is deployed on the fifth host. The agents and the
web-server are the applications installed on the
corresponding hosts. The IP addresses are being installed
automatically. It is necessary to fix a set of other
application parameters.
Web-server is deployed on the host d_srv. The interaction
port and the answer delay must be set. Detector is
deployed on the host d_det. The following parameters are
used for detector: the defended host IP address, the port
for team interaction, the interval for sensor inquiry, and
the maximum allowed data-rate to server (BPS, bit per
second). Sampler is deployed on the host d_firewall (on
the entrance to the server subnet). Filter is installed on the
host d_r (router). Investigator is deployed on the host
d_inv. For each of the last three agents, the private port,
the IP address of detector and the port for team interaction
must be set.
The intermediate subnet (Figure 2, not highlighted hosts)
consists of N hosts i_cli[…] with generic clients. They are
connected by the router i_r. The number of hosts N is the
simulation parameter which can be set. The following
parameters of clients must be specified: IP-address and
port of server, the time of work start, the quantity and size
of requests while connecting to server, the size of reply
and the time of reply preparation, the idle interval.
The subnet of attack (Figure 2, hosts highlighted with red)
consists of M hosts i_cli[…] with daemons deployed and
one host with master deployed. The number of hosts M
must be set. Master has the following parameters: port for
team interaction, IP-address and port of attack target, the
time of start of attack and its rate (measured in packets
per second). Daemon has the following parameters: the
port, masters’ IP-address and port for team interaction.

Figure 1 : common representation of the simulation environment

5 Example of warfare simulation

5.1 Learning mode of operation

The main task of learning mode is to create the model of
generic traffic for the given network. The clients send the
requests to the server and it replies. At this time sampler
analyses requests and uses them to form the models and
parameters for the SIPM, HCF and BPS methods. During
the learning it is possible to watch the change of traffic
models for each of discussed methods.

Figure 3 represents the list of hosts that sent requests to
server and hops to them after 300 seconds of learning and

the time of last request. As
mentioned above the hop count is
calculated on the basis of the TTL
packet field.
Figure 4 depicts the change of new
addresses amount for sampler
during first 300 seconds of
learning. One can see that in the
beginning when clients requested
server at the first time there were
many new addresses (the maximum
is 6 addresses, the time interval is
10 seconds, and the shift is 3
seconds). The last unknown address
appeared in the region of 100 first
seconds. At least, when all clients
requested the server there were no
new addresses.
Figure 5 represents the list of
clients requested the server and
considered as legitimate after first
300 seconds of learning. One can
see here that in the interval between
0 and 50 seconds there were many
new addresses. Figure 6 represents
the change of maximum BPS (for
interval 10 seconds and shift 3
seconds) after 300 seconds from the
beginning of learning.
The maximum value was 1742.4

bit/s and was recorded in the area of 100 seconds. One
can see also the values of BPS for clients that requested
server in the current time interval. Figure 7 depicts the
values of transmitted bits for every client that requested
server in the interval of 10 seconds.

Figure 3 : list of hosts that sent requests to server and
hops to them after 300 seconds of learning

Figure 5 : list of clients requested server and
considered as legitimate after 300 seconds of learning

Figure 4 : change of new IP addresses amount

Figure 2 : example of computer network for simulation

5.2 Decision making and acting

Figure 2 represents the structure of the network for
simulation and the allocation of attack and defense agents.
Simulation scenario is realized on the same configuration
as was used for learning. The only difference is that the
attack team is engaged now.
Attack team initial parameters are as follows:
target_ip="d_srv" (target of attack is server d_srv);
target_port="2001" (target port); t_ddos=300 (time of
attack start); attack_rate=5 (intensity of attack in packets
per second); ip_spoofing="no" (no IP spoofing is used).
After simulation start the clients begin to send requests to
the server and it replies. This is the
way the generation of generic network
traffic takes place (Figure 8, interval 0
– 300 seconds).
The formation of defense team occurs
after some time from start.
Investigator, sampler and filter
connect to detector and send it the
messages that they are alive and ready
to work. Detector stores this
information. The attack team is
formed in the same way. Daemons
connect to master and report their
status.
After establishing the defense team
begins to function. Sampler collects
traffic data and compares it with the
model data that was acquired during
learning mode. The addresses that are
the source of anomalies are sent to
detector every n seconds (in this
scenario n=60). Detector makes the
decision about the attack and sends to

filter and investigator the addresses of suspicious hosts.
Figure 8 represents the graphs of channel throughput on
the entrance to the defended network before (red) and
after (blue) filter.
After 300 seconds from simulation start the attack team
begins attack actions. Master examines all daemons that it
knows. Then it sends the attack command to all workable
daemons. This command includes address and port of
attack target, intensity (distributed among daemons) and
the method of IP spoofing. In this case they are: target –
d_srv, port – 2001, intensity of attack for every daemon
(calculated as intensity divided by the number of
daemons) 5/10=0.5, spoofing – “no” (no IP spoofing).
When daemons receive the command they begin to send
the attack packets (Figure 8, timestamp 300 seconds).
After a while, sampler determines the suspicious hosts
with the use of BPS method. The BPS parameter of these
hosts exceeds normal. Detector receives the addresses of
these hosts from sampler and sends them to filter and
investigator. Filter sets the filtering rules and the packets
from the given hosts begin being dropped (Figure 8,
timestamps 400 – 600 seconds, blue graph).
Investigator tries to inspect the given hosts and to defeat
the attack agents deployed there. It succeeds in defeating
of 4 daemons. The string “defeated” appears above the
defeated agent in the window of network structure.
However the other daemons continue the attack (Figure 8,
after 400 seconds, red graph).
Master examines daemons next time 600 seconds after
modeling starts. It does not succeed to connect with all
daemons since some of them were defeated by
investigator.
Master makes the decision to redistribute the intensity of
attack to keep the overall intensity on the given level.
Also it decides to change the method of IP spoofing to
complicate the detection and defeating of attack agents by
defense team. Master sends to alive daemons the
command: target – d_srv, target port – 2001, intensity –
5/(10–4)=0.83, IP spoofing method – “random”. When
daemons receive the command they continue to send the

Figure 6 : change of BPS parameter

Figure 7 : values of transmitted bits

Figure 8 : graphs of channel throughput on the entrance to the defended
network before (red) and after (blue) filter (bits/s to seconds)

200 400 600

5000

10000

attack packets having applied the new parameters (Figure
8, timestamp 600 seconds).
Detector sees that the input channel throughput has
noticeably lowered since the traffic from attack team has
raised (Figure 8, after 600 seconds). Detector does not
receive the anomaly report from sampler though. This is
because the method BPS used by sampler does not work
fine when attacker changes the sender address in every
packet. That is the reason that detector fails to confront
some address with the big traffic.
Therefore detector decides to apply another DDoS
defense method – SIPM. Then the large amount of new IP
addresses for sampler leads to attack detection and
dropping the malicious packets. This method however
does not allow tracing the source of attack and
investigator fails to defeat attack agents. But the attack
packets are filtered and the traffic in the subnet of
defended host returns to normal state.

6 Conclusions

The main results of the work we described in the paper
consist in developing basic ideas on agent-based modeling
and simulation of defense mechanisms against attacks and
implementing the corresponding software environment.
The environment developed is written in C++ and
OMNeT++. It allows to imitate a wide spectrum of real
life DDoS attacks and defense mechanisms.
Different experiments with this environment have been
fulfilled. These experiments include the investigation of
attack scenarios and protection mechanisms for the
networks with different structures and security policies.
One of the scenarios was demonstrated in the paper.
Future work is connected with building more realistic
environment, and conducting experiments to both
evaluate computer network security and analyze the
efficiency and effectiveness of security policy against
different attacks.
This research is being supported by grant of Russian
Foundation of Basic Research (№ 04-01-00167), grant of
the Department for Informational Technologies and
Computation Systems of the Russian Academy of
Sciences (contract №3.2/03) and partly funded by the EC
as part of the POSITIF project (contract IST-2002-
002314).

References

[1] T.Back, D.B.Fogel, and Z.Michalewicz,
Evolutionary computation. Vol. 1. Basic algorithms and
operators, Institute of Physics Publishing, 2000.
[2] E.Charniak, and R.P.Goldman, A Bayesian Model of
Plan recognition. Artificial Intelligence, V.64, N 1, 1993.
[3] A.G.Chhartishvili, Game theory modeling of
information control in active systems, Human factor in
control systems. Moscow, 2005 (in Russian).
[4] P.Cohen, H.J.Levesque, Teamwork, Nous, 35, 1991.
[5] V.V.Druzhinin, D.S.Kontorov, M.D.Kontorov,
Introduction into conflict theory. Moscow, Radio i svyas’,
1989 (in Russian).
[6] FIPA. http://www.fipa.org

[7] C.W.Geib, and R.P.Goldman, Plan recognition in
intrusion detection systems, DARPA Information
Survivability Conference and Exposition, DARPA and the
IEEE Computer Society, 2001.
[8] R.P.Goldman, C.W.Geib, and C.A.Miller, A New
Model of Plan Recognition, Proceedings of the 1999
Conference on Uncertainty in Artificial Intelligence,
1999.
[9] V.Gorodetski, and I.Kotenko Attacks against
Computer Network: Formal Grammar-based Framework
and Simulation Tool, Recent Advances in Intrusion
Detection. Fifth International Symposium. RAID 2002.
Zurich, Switzerland. Lecture Notes in Computer Science,
V.2516, 2002.
[10] B.Grosz, and S.Kraus, Collaborative Plans for
Complex Group Actions, Artificial Intelligence, Vol.86,
1996.
[11] D.Gu, and E.Yang, Multiagent Reinforcement
Learning for Multi-Robot Systems: A Survey, Technical
Report of the Department of Computer Science,
University of Essex, CSM-404, 2004.
[12] N.R.Jennings, Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions, Artificial Intelligence, Vol.75, No.2, 1995.
[13] C.Jin, H.Wang, and K.G.Shin, Hop-count filtering:
An effective defense against spoofed DDoS traffic,
Proceedings of the 10th ACM Conference on Computer
and Communications Security, 2003.
[14] H.Kautz, and J.F.Allen, Generalized plan
recognition, Proceedings of the Fifth National Conference
on Artificial Intelligence, 1986.
[15] J.Kelemen, Colonies: grammars of reactive systems,
Proceedings of AICRS'97. World Scientific, Singapore,
1997.
[16] I.Kotenko, and A.Ulanov, Multiagent modeling and
simulation of agents’ competition for network resources
availability, Second International Workshop on Safety and
Security in Multiagent Systems. Utrecht, The Netherlands.
2005.
[17] V.A.Lefevre, Reflexion. Moscow, “Kognito-Center”,
2003 (in Russian).
[18] J.Mirkovic, S.Dietrich, D.Dittrich, and P.Reiher,
Internet Denial of Service: Attack and Defense
Mechanisms. Prentice Hall PTR, 2004.
[19] Nomad Mobile Research Centre.
http://www.nmrc.org
[20] A.A.Stogniy, and A.I.Kondrat’ev Game theory
information modeling in decision making systems. Kiev:
Naukova dumka, 1986 (in Russian).
[21] M.Tambe, Towards flexible teamwork, Journal of AI
Research, Vol.7, 1997.
[22] OMNeT++ homepage. http://www.omnetpp.org/
[23] T.Peng, C.Leckie, and R.Kotagiri, Proactively
Detecting DDoS Attack Using Source IP Address
Monitoring, Networking 2004, Athens, Greece, May,
2004.
[24] M.Vilain, Getting Serious about Parsing Plans: A
Grammatical Analysis of Plan Recognition, Proceedings
of the Eighth National Conference on Artificial
Intelligence, Cambridge, MA, 1990.
[25] M.P.Wellman, and D.V.Pynadath, Plan Recognition
under Uncertainty, Unpublished web page, 1997.

