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Abstract— This paper addresses the problem of sensor man-
agement for a large network of agile sensors. Sensor management
refers to the process of dynamically retasking agile sensors
in response to an evolving environment. Sensors may be agile
in a variety of ways, e.g., the ability to reposition, point an
antenna, choose sensing mode, or waveform. The goal of sensor
management in a large network is to choose actions for individual
sensors dynamically so as to maximize overall network utility.

Sensor management in the multiplatform setting is a challeng-
ing problem for several reasons. First, the state space required to
characterize an environment is typically of very high dimension
and poorly represented by a parametric form. Second, the net-
work must simultaneously address a number of competing goals.
Third, the number of potential taskings grows exponentially
with the number of sensors. Finally, in low communication
environments, decentralized methods are required.

The approach we present addresses these challenges through
a novel combination of particle filtering for nonparametric
density estimation, information theory for comparing actions,
and physicomimetics for computational tractability. The efficacy
of the method is illustrated in a realistic surveillance application
by simulation, where an unknown number of ground targets are
to be detected and tracked by a network of mobile sensors.
Keywords: multiplatform sensor management, joint mul-
titarget probability density

I. INTRODUCTION

Large networks of inexpensive sensors provide a means for
performing persistent and ubiquitous surveillance over a wide
region. In this paper, we address the problem of managing the
resources of a network consisting of a large number (i.e., tens
to thousands) of agile sensors. Agility, as defined here, refers
to any property of a sensor that can be dynamically tasked
so that the network of sensors will be better able to perform
surveillance on a region. In the general case, each sensor in
the network is capable of a variety of actions, including where
to move, which direction to emit energy, what mode to use,
what waveform to transmit (if active), or which direction to
listen (if passive). The goal of network sensor management
is to develop a methodology where each node in the sensor
network adjusts its behavior dynamically so that the overall
utility of the network is maximized.

Portions of this work were supported under the USAF contract F33615-02-
C-1199 and by the DARPA MURI program under ARO contract DAAD19-
02-1-0262.

Sensor management in large networks is challenging for a
host of reasons. First, the state space required to characterize
the surveillance region is typically of very high dimension and
poorly represented by a parametric form. It is this state space
that the network of nodes is to estimate, so proper mathemat-
ical formulation and efficient implementation is key. Second,
the network must simultaneously address many competing
goals (e.g., detection of new areas of interest while monitoring
known areas of interest), and so the scheduling metric must
be chosen to appropriately balance these goals. Third, exact
maximization of overall network utility is intractable as the
number of actions at each decision epoch is exponential in
the number of nodes. Therefore, a principled approximation
to simultaneous multiplatform scheduling must be employed.
Fourth, there must be information sharing between the indi-
vidual nodes (or the nodes and a central controller) so that
the sensing workload is appropriately divided up amongst the
collection of sensors. Information collected by the individual
nodes must be fused (either centrally or at each node individu-
ally) to yield a single picture that characterizes the knowledge
of the system under surveillance. This fused picture must then
drive the actions of the sensors at the next decision epoch.

In this paper, we describe a method of scheduling the nodes
in a large agile network that addresses each of the challenges
outlined above. This method is a novel combination of adap-
tive importance density particle filtering for nonparametric
density estimation (Section II, information theoretic measures
for estimating the value of possible future actions (Section III),
and physicomimetics for providing a tractable approximation
to the joint optimization (Section IV. Section V provides
simulation results illustrating the efficacy of the approach.

II. THE JOINT MULTITARGET PROBABILITY DENSITY

(JMPD)

This section reviews the Joint Multitarget Probability Den-
sity (JMPD) and its Particle Filter (PF) implementation [1]–
[3]. The JMPD is a single probabilistic entity that captures all
of the uncertainty about a surveillance region. This includes
uncertainty about the number of targets present in the region,
as well as the kinematic state, class, and mode of each. The
JMPD is computed recursively by fusing measurements, target



models, sensor models, and ancillary information such as
roadway and terrain elevation maps.

A. Formulation of the JMPD

Recursive estimation of the JMPD provides a means for
simultaneously estimating the number of targets and their
kinematic states by fusing models and measurements. The joint
multitarget conditional probability density
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k,...xT−1
k , xT

k , Tk|z0:k) = (1)
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is the density for T targets with states x1, x2, ..., xT−1, xT at
time k based on a set of past observations z0:k.

The observation set z0:k is the collection of measurements
up to and including time k, i.e., z0:k

.= {z0, z1, · · · , zk},
where each zi may be a single measurement or a collection of
measurements made at time i (e.g., a vector, matrix, or a con-
catenation of measurements from multiple sensors made at the
same time). We will refer to measurements made at time i as
zi, all measurements made from time 0 to time k as z0:k, and a
generic measurement set (either a collection of measurements
or a measurement at a single time) as simply z, which will be
clear by context. Furthermore, in future sections we will also
find it necessary to explicitly include the sensing action r (e.g.,
the choice of sensor mode or sensor movement) that resulted
in the measurement z. In this case, the JMPD will be more
explicitly written as p(x1

k, x2
k, ...xT−1

k , xT
k , Tk|z0:k, r0:k). For

simplicity, this notation is suppressed in the present discussion.
Each of the single target state vectors xi in the density

p(x1
k, x2

k, · · · , xT−1
k , xT

k |Tk, z0:k) is a vector quantity. We will
typically use the two-dimensional target state idealization
[x, ẋ, y, ẏ] when providing concrete examples.

For convenience, the JMPD will be written more compactly
in the traditional manner as p(Xk, Tk|z0:k), which implies that
the system state-vector Xk represents a collection of Tk targets
each possessing their own state vector. This can be viewed as
a hybrid stochastic system where the discrete random variable
Tk governs the dimensionality of Xk.

The number of targets at time k, Tk, is a variable to be
estimated simultaneously with the states of the Tk targets.
The JMPD is defined for all Tk, Tk = 0 · · ·∞. Therefore
the normalization condition that the JMPD must satisfy is

∞∑
T=0

∫
dx1 · · · dxT p(x1, · · · , xT , T |z) = 1 , (2)

where the single integral sign is used to denote the T inte-
grations required (time subscripts are dropped here to lighten
notation). This can alternatively be written in the shorthand
notation ∞∑

T=0

∫
dXp(X, T |z) = 1 , (3)

where T determines the dimensionality of X and the single
integral sign represents the T integrations required.

The likelihood p(z|X, T ) and the joint multitarget prob-
ability density p(X, T |z) are conventional Bayesian objects

manipulated by the usual rules of probability and statistics.
The model of how the JMPD evolves over time is given by
p(Xk, Tk|Xk−1, Tk−1) and will be referred to as the kinematic
prior (KP). The KP includes models of target motion, birth and
death, and any additional prior information on kinematics that
may exist. In the case where identification is part of the state,
different models may be used for different target types.

The time-updated density is computed via

p(Xk, Tk|z0:k−1) = (4)
∞�

Tk−1=0

�
dXk−1p(Xk, Tk|Xk−1, Tk−1)p(Xk−1, Tk−1|z0:k−1) .

The measurement update equation uses Bayes’ rule to
update the posterior density with a new measurement zk as

p(Xk, Tk|z0:k) =
p(zk|Xk, Tk)p(Xk, Tk|z0:k−1)

p(zk|z0:k−1)
. (5)

B. The Particle Filter Implementation of the JMPD

The sample space of the JMPD is very large as it contains all
possible configurations of state vectors Xk = {x1

k, · · · , xTk

k }
for all possible values of Tk. Thus, for computational tractabil-
ity, a sophisticated approximation method is required [2], [3].

In particle filtering, the probability density of interest (here
the JMPD) is represented by a set of N weighted samples
(particles). Since a particle is a sample from the PDF of
interest, it is more than just the estimate of the state of a
target; it is an estimate of the state of the surveillance region.
In particular, it incorporates both an estimate of the states of all
of the targets as well as an estimate of the number of targets.

The multitarget state vector for T targets is simply the
concatenation of T single target state vectors :

X = [x1, x2, · · · , xT−1, xT ] . (6)

Similarly, a particle is a concatenation of T (i) states,

X(i) = [x(i)(1), x(i)(2), · · · , x(i)(T (i)−1), x(i)(T (i))] , (7)

which says particle i estimates there are T (i) targets, where
T (i) can be any non-negative integer, and in general is different
for different particles. To formalize, let δD denote the ordinary
Dirac delta, and define a delta function between the T -target
state vector X and the T (i)-target state vector X(i) as

δ(X − X(i)) =
{

0 T �= T (i)

δD(X − X(i)) otherwise
(8)

Then the particle filter approximation to the JMPD is given
by a set of particles X(i) and corresponding weights w(i) as

p(X, T |z) ≈
N∑

i=1

w(i)δ(X − X(i)) (9)

where
∑N

i=1 w(i) = 1.
The JMPD is defined for all possible numbers of targets,

T = 0, 1, 2, · · · . As each of the particles is a sample drawn
from the JMPD, a particle may estimate 0, 1, 2, · · · targets.



III. INFORMATION THEORETIC SENSOR MANAGEMENT

This section describes a method of sensor management
based on maximizing information flow [4], [5]. We focus here
on the single platform case and describe the multiplatform
case in the following section. Sensor management, as defined
here, refers to choosing the best action for an agile sensor to
take. This may include where to point, what mode to use, or
where to move. In this method of sensor management, actions
are ranked based on the amount of information expected to be
gained from their execution. In principle, this is accomplished
by computing the expected gain in information between the
current JMPD and the JMPD that would result after taking
action r and making a measurement, for all feasible r. Then
the sensor management decision is to select the best r using
expected information gain as the metric.

A. The Rényi Divergence

In our approach, the calculation of information gain between
two densities p1 and p0 is done using the Rényi information
divergence, also known as the α-divergence:

Dα(p1||p0) =
1

α − 1
ln

∫
pα
1 (x)p1−α

0 (x)dx . (10)

The α parameter adjusts how heavily the metric emphasizes
the tails of the two distributions p1 and p0. In the limiting
case of α → 1 the Rényi divergence becomes the commonly
utilized Kullback-Leibler (KL) discrimination

lim
α→1

Dα(p1||p0) =
∫

p0(x) ln
p0(x)
p1(x)

dx . (11)

B. Rényi Divergence Between the Prior and Posterior JMPD

The function Dα in eq. (10) is a measure of the diver-
gence between the densities p0 and p1. In our application,
we wish to compute the divergence between the predic-
tion density p(Xk, Tk|z0:k−1, r0:k−1) and the updated den-
sity after a measurement zk when taking action rk, denoted
p(Xk, Tk|z0:k−1, r0:k−1, zk, rk). Notice that we now include
the action taken at time k, rk, and the history of actions
r0:k−1 explicitly into the notation for clarity. This divergence
measures the amount of information that the new measurement
has provided and allows us to rank the utility of different
actions according to the information flow they produce. The
relevant divergence for our setting is thus given by

Dα

(
p(·|z0:k−1, r0:k−1,zk, rk)||p(·|z0:k−1, r0:k−1)

)
= (12)

1
α − 1

ln
∑
Tk

∫
pα(Xk, Tk|z0:k−1, r0:k−1, zk, rk)×

p1−α(Xk, Tk|z0:k−1, r0:k−1)dXk .

Using Bayes’ formula (eq. (5)), we obtain

Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)
= (13)

1
α − 1

ln
1

pα(zk|z0:k−1, r0:k−1, rk)
×

∑
Tk

∫
pα(zk|Xk, Tk, rk)p(Xk, Tk|z0:k−1, r0:k−1)dXk .

C. The Expected Rényi Divergence for a Sensing Action

To determine the best action to take next, we must predict
the value of taking action rk before actually receiving the
measurement zk. Therefore, we calculate the expected value
of the divergence for each possible action and use this to select
the next action. The expectation may be written as an integral
over all possible outcomes zk when taking action rk as

E[Dα] .=
∫

dzkp(zk|z0:k−1, r0:k−1, rk)× (14)

Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)
.

The expectation in eq. (14) is across the measurement
outcome zk and is to be interpreted as a conditional expecta-
tion where the past sensor measurements z0:k−1, past sensor
actions r0:k−1, and current sensing action rk are known.

Then the method of scheduling is to choose the action r̂k

as the one that maximizes the expected information gain, i.e.,

r̂k = arg max
rk

E[Dα] . (15)

In practice, certain rk are infeasible. There are kinematic
constraints of the platform, including maximum platform
velocity and acceleration. Also there are physical constraints
which prevent certain motions, including the topology of the
surveillance region (i.e., a sensor should not collide with
anything). Therefore, we need the constrained optimization

r̂k = arg max
rk∈C

E[Dα] . (16)

where C is the set of actions that meet both the kinematic
and physical constraints. For single sensor scheduling, these
constraints are handled in practice by simply removing those
actions that violate the constraints from consideration.

D. Theoretical Motivation For the Information Gain Metric

Consider a situation where a target is to be detected,
tracked and identified using observations acquired sequentially
according to a given sensor selection policy. In this situation
one might look for a policy that is “universal” in the sense that
the generated sensor sequence is optimal for all three tasks. A
truly universal policy is not likely to exist since no single
policy can be expected to simultaneously minimize target
tracking MSE and target miss-classification probability, for
example. Remarkably, policies that optimize information gain
are near universal: they perform nearly as well as task-specific
optimal policies for a wide range of tasks. In this sense the
information gain can be considered as a proxy for performance
for any of these tasks. The fundamental role of information
gain as a near universal proxy has been demonstrated both by
simulation and by analysis in [6]. The key result is a bound
that shows any bounded risk function is sandwiched between
two weighted alpha divergences. This inequality is a rigorous
theoretical result that suggests that the expected information
gain is a near universal proxy for arbitrary risk functions.



E. Computational Method

When there are only a small number of actions to choose
from, application of this method is straightforward. For each
possible action, we compute the expected gain in information
as given by eq. (14). This computation is O(M) where M is
the (small) number of (discrete) actions possible.

However, when the action space is continuous, simple enu-
meration is not feasible. We now specialize to the case where
the action r refers to a new positioning of the sensor (i.e., the
platform is mobile and the sensor management problem is one
of deciding where to move the platform). The new position r
of the sensor is in principle a 3 dimensional vector from the
continuum R3 specifying the (x, y, z) coordinates of the next
platform position. In this situation, we use ideas from earlier
works that employ “virtual force” or “potential field” methods
[7]. In the field approach, one computes a force that compels
a sensor to move rather than explicitly calculating the value
of all possible next positions and choosing the best.

In our method, the value of a potential next position is given
by the expected information gain (eq. (14)). Therefore, the
force that drives platform action in the continuous action space
case is the gradient of the information gain field at the current
location, as given by FI(rk) = −β∇rk

E[Dα], where β is a
scaling parameter. This force then drives the sensor to move in
the manner that maximally provides information flow (subject
to the constraints discussed above).

IV. MULTIPLATFORM INFORMATION BASED SENSOR

MANAGEMENT

In this section, we present our method of information based
multiplatform sensor management. The method works by max-
imizing the expected information gain between the posterior
JMPD and the JMPD after a new set of measurements are
made by the P platforms. It builds on the ideas and notation
developed in Section III for the single sensor case but now
has the additional constraints imposed by multiple sensors in
a single surveillance area (i.e., the sensors should not collide
and sensors should not be redundantly tasked unless there is
compelling reason to do so).

This section proceeds by first giving the formulation of opti-
mal multisensor information theoretic scheduling assuming the
scheduler is centralized. This is seen to be a joint constrained
information theoretic optimization by natural extension of
the ideas in Section III, but the constraint set has changed.
Furthermore, the optimization is now seen to be combinatoric
in nature (i.e., the joint action space grows exponentially with
the number of sensors) so relaxation is required. We next show
that the joint constrained information theoretic optimization
can be written as a sum of single sensor optimizations and a
correction term. The correction term can be explicitly written
in a limiting case of the Rényi Divergence. The correction
term is then approximated to produce a tractable method
computationally. Finally, if we allow each sensor to compute a
local estimate of the JMPD and use limited message passing
between neighboring sensors, we show the entire procedure
can be done in a decentralized manner.

A. Optimal Multisensor Information Theoretic Scheduling

Information theoretic scheduling for a collection of P
platforms requires choosing the set of P next-actions for the
P platforms. The formulation for the multiple platform case
can be given as a direct extension of the single sensor case.
First, let ri

k and zi
k denote the sensing action and measurement

received, respectively, for the ith sensor at time k. Next, let �rk

and �zk denote the sensing actions (here the new positioning of
the P platforms) and measurements for the P platforms at time
k, respectively. That is, let �rk = [r1

k, r2
k, · · · , rP−1

k , rP
k ] and

�zk = [z1
k, z2

k, · · · , zP−1
k , zP

k ]. Then multisensor information
theoretic scheduling seeks to find the best choice of sensor
actions �̂rk as given by eq. (17), where the integral is to be
interpreted as performing the P integrations required.

�̂rk =argmax
�rk∈C′

E[DP
α ] .=

∫
d�ztp(�zk|z0:k−1, r0:k−1, �rk)×

Dα

(
p(·|z0:k−1, r0:k−1)||p(·|z0:k−1, r0:k−1, �zk, �rk)

)
. (17)

Analogously to eq. (14), the expectation in eq. (17) is
taken over the measurement outcomes �zk and is conditioned
on knowing the past measurements z0:k−1, the past actions
r0:k−1, and the current action set �rk.

Note that direct computation of this quantity requires com-
parison of MP possible sensing actions (in the case where
there are M discrete actions for each of the P platforms). This
is clearly not tractable for large P , and therefore approximate
techniques are required.

Note further that this is also a constrained optimization.
In the multisensor case, the constraint set C′ is expanded
beyond the single sensor constraint set to now include both
the original constraints of C and a new constraint that sensors
do not collide with each other. That is

C′ = C ∩ {‖ri − rj‖ > d ∀i, j where i �= j } . (18)

B. Connection to Single Sensor Optimization

The joint optimization can be rewritten as a sum of single
sensor optimizations plus a correction factor as

argmax
�rk∈C′

P∑
i=1

E[D(i)
α ] + E

[
h(�zk, �rk, z0:k−1, r0:k−1)

]
. (19)

where the function h is an “information coupling” term which
accounts for the fact (among other things) that the gain in
information for two sensors taking the same action is not
double the information gain for a single sensor taking the
action. In the limiting case as α → 1, the correction term
can be written explicitly and the simplification becomes

argmax
�rk∈C′

P∑
i=1

E[D(i)
α ]+ (20)

E
[
ln

( p(z1
k, · · · , zP

k |r1
k, · · · , rP

k , z0:k−1, r0:k−1)
p(z1

k|r1
k, z0:k−1, r0:k−1) · · · p(zP

k |rP
k , z0:k−1, r0:k−1)

)]
i.e., the multisensor optimization can be written explicitly as
a sum of single sensor optimizations and a correction term



which is simply the expected value of the log of the joint
measurement likelihood over the product of the individual
measurement likelihoods.

The correction term has this intuitive form related to mutual
information when the KL divergence (α → 1) is used. It
reflects the utility that other sensor measurements provide
in predicting a sensors measurement. In the limiting case of
independent actions, this term vanishes.

The correction term is still O(MP ) to compute, where M
is the number of potential actions each platform could take
and P is the number of platforms, and therefore must be
approximated. Note also, that it is this correction term that
hinders distributed implementation.

C. Computational Method

The new constraint that sensors cannot collide deals with
action sets and not simply with individual actions. It is not
computationally feasible to enumerate and censor all action
sets that violate the constraint. Therefore, we address this
constraint by defining the Lagrangian

L(�rk) =E[DP
α ] + λf(�rk)

=
P∑

i=1

E[D(i)
α ] + E

[
h(�zk, �rk, z0:k−1, r0:k−1)

]
+ λf(�rk) ,

where the function f is a term that penalizes action sets that
move the sensors too close together. The joint optimization
then becomes an unconstrained optimization

�̂rk = arg max
�rk

L(�rk) . (21)

This optimization can be looked at as a sum of three terms:
a collection of single-sensor optimizations, an information
coupling (or correction) term, and a collision avoidance term.
In our method, we simultaneously approximate both the infor-
mation coupling term involving the expectation of h and the
collision prevention term f by introducing a function which
reduces the value of action sets that involve sensors moving
close together. We have chosen to use a physicomimetic
force [7] to provide this approximation, although other similar
approximations are also valid. Evaluating this force has a very
small computational burden, and requires only that a node
know the positions of its neighbors.

Since we remain in a continuous action space environment,
we must cast this approximation term via a vector force as
well. We use a generalization of the Lennard-Jones potential
that serves as a zeroth order model of the intermolecular forces
of liquids (Other approximations with a similar attractive-
repulsive character would also be viable). The Lennard-Jones
force for a pair of platforms i, j separated by a distance di,j

is radial with magnitude

FLJ(di,j) = −ε

[
m

γm

dm+1
i,j

− n
γn

dn+1
i,j

]
. (22)

Denote by Fi,j
LJ(ri) the vector force node i feels from node j

when positioned at ri (which is radial in direction with magni-
tude given by eq. (22)). Then the total force node i feels from

all other nodes when positioned at ri is simply Fi
LJ(ri) =∑

j �=i F
i,j
LJ(ri). Using this approximation approach to the joint

constrained information theoretic optimization of eq. (17)
results in the final approximate multiplatform optimization

�̂rk = arg max
�rk

E[D(i)
α ] + λFi

LJ (ri
k) .

This approximation can be viewed as driving sensors to
compute greedy actions (i.e., ignoring actions of other sensors)
and correcting by compelling sensors to stay away from others.
These two forces are balanced through λ, which when properly
chosen, allows sensors to come near when the warranted (i.e.,
in cases where the maximal joint utility is gained from close
positioning of sensors), while staying apart in general.

D. Distributed Implementation

Notice that the method allows each sensor to compute its
next action in a completely distributed manner, assuming each
sensor has (a) knowledge of the other sensors positions, and
(b) knowledge of the JMPD (or alternatively has access to
all measurements the network has made). The first portion
of the term in simply requires the expected information gain
computed at each node without regard to the actions of other
nodes. The second portion of the term requires only that each
node know of the position of the nearby nodes.

We are further interested here in a low communication
version of this optimization. Therefore, only selected mea-
surements may be transmitted by the network. What results in
this case is that each sensor in the network has an approxi-
mate JMPD, computed only using locally made measurements
and measurements shared by nearby neighbors. Therefore, in
practice the distributed version of this optimization works
as follows. Each sensor collects measurements at its current
position. Selected measurements (based on the likelihood they
originate from a target as determined by the local estimate of
the JMPD) are broadcast along with an estimate of platform
position. Those platforms within the communication radius
receive this transmission, and likewise a platform receives the
transmission from all other platforms for which it is in the
communication radius. The locally made measurements and
measurements received from neighbors are used to update
the local JMPD as described in Section II. Each platform
than computes the greedy (single-sensor) information based
utility for future positionings and corrects this impetus with
the repulsive Lennard-Jones force. The platform then moves
and the process starts anew.

V. SIMULATION RESULTS

This section presents two simulation studies illustrating the
efficacy of the sensor management method presented here.

The first case study uses a small number (15) of capable
platforms for region surveillance. This simulation implements
the decentralized version of the algorithm by (a) estimating the
(local) JMPD at each platform from local measurements and
measurements received from neighbors (if any), and (b) com-
puting movements by combining locally computed information
theoretic forces with locally computed physicomimetic forces.
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Fig. 1. The model problem. The network is to determine the number and state
of a group of moving ground targets. Each node stares directly down and has
its position controlled by the information theoretic method described here.

The simulation analyzes performance in terms of detection and
tracking capabilities as a function of communication radius.

The second case study focusses on a large number of
platforms with limited sensing capabilities. For the purposes
of simulation, the centralized version of the algorithm is
used. Although simulation of the entire decentralized algo-
rithm is near real-time on a per-platform basis, simulation
of 500 platforms requires significantly longer than real-time
(500 times longer). The centralized algorithm is significantly
cheaper computationally, owing to the fact that only one
JMPD must be estimated (rather than 500 local JMPDs).
The communication burden is significantly increased, however.
This simulation illustrates surveillance in a similar model
problem, and also compares the performance of the algorithm
with an algorithm using only the physicomimetic force and one
with only the information gain force. Simulations show that
the algorithm that combines forces significantly outperforms
algorithms based on the constituent forces alone.

A. A Small Number of Capable Platforms

1) Description of the Model Problem: The following simu-
lation uses 15 platforms with decentralized control to provide
surveillance on a large region. The model problem uses a
5000m × 5000m surveillance area that contains 10 moving
ground targets (the number of targets, their positions and
velocities are initially unknown). Each sensor has an imaging
sensor with a wide field of view that provides evidence as
to the presence or absence of targets in a subsection of the
region at any time. The goal is for the network of sensors to
collaborate together in a low communication setting so that
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Fig. 2. The random positioning of the 15 platforms at initialization (l) and after
some time (r). Platform position is given by the number and its field of view
is described by the circle surrounding the number. The true position of each of
the ten moving ground targets is shown by the numbered circles. Qualitatively,
after some time, the platforms have preferentially aligned themselves over the
targets while still allocating some network resources to look for new targets.

the number of targets and their individual states is learned as
quickly and accurately as possible.

Target trajectories for the simulation come directly from a
set of recorded data based on GPS measurements of vehicle
positions over time collected as part of a battle training exer-
cise at the Army’s National Training Center. Targets routinely
come within sensor cell resolution (i.e., cross). Persistent
targets are modeled in the JMPD time evolution using a simple
nearly constant velocity approach, which is in fact mismatched
to the actual targets as they routinely perform move-stop-move
and other maneuvers. Target birth and death is modeled in the
JMPD time evolution as spatially and temporally constant.

Each platform is idealized to hover above the surveillance
region and has an imaging sensor that stares directly down. At
each time step, the imager measures cells in the surveillance
area by making measurements on a grid. The model problem
setup is illustrated in Figure 1.

When measuring a cell, the imager returns either a 0 (no
detection) or a 1 (detection) which is governed by a probability
of detection (pd) and a per-cell false alarm rate (pf ). Both are
assumed to be temporally and spatially constant . The signal
to noise ratio (SNR) links these values together. The sensor
is modeled to have a field of view with radius 5 cells from
its center and hence measures a circular patch on the ground.
The effective SNR is maximum at the center and falls off as
r2 at the periphery. We fix SNRmax = 16dB, pf = 0.01,

and use pd = p
1

1+SNR

f returns. When there are T targets in the

same cell, the detection probability is pd(T ) = p
1

1+SNR∗T

f .
Each platform computes a local estimate of the JMPD using

measurements it has made and measurements received from
neighbors. Platforms then use the joint constrained information
theoretic optimization approximation described in the previous
section to compute next best movements.

Figure 2 shows an initial (random) positioning of the 15
sensors and the position after some time. As can be seen
from the figure, over time the sensors preferentially align
themselves around the targets (which were discovered through
repeated interrogation of the ground) while still allocating
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proposed decentralized approach as a function of
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Fig. 3. Monte Carlo performance results for the 15 sensor region surveillance application.

some resources to look for new targets.
2) Monte Carlo Simulation of Performance: Figure 3

presents the results of a Monte Carlo simulation of per-
formance in this model problem. We illustrate the network
knowledge in three ways: at the Average Sensor, at the Track
Fuser, and at the (hypothetical) Omniscient Fuser. The
performance of the network is measured by the number of
True Targets correctly found and False Targets incorrectly
thought to exist. Additionally, we look at the Communication
Requirements of the method in terms of the percent of
measurements that each node transmits.

B. A Large Number of Low Capability Platforms

1) Description of the Model Problem: In this subsection,
we turn our attention to a setting where surveillance is to
be performed with a large number (hundreds or thousands)
of inexpensive low-capability sensors. The simulation uses
the same region size and target motion data as the previous
simulation. Again, the platforms are idealized to hover above
the surveillance region and stare directly down. However, in
this simulation each sensor is capable of only measuring a
single detection cell immediately below the platform and has
degraded detection capabilities (SNR = 10dB).

2) Emergent Behavior With Different Scheduling Methods:
In Section IV, we cast the multiplatform information theoretic
scheduling criteria as a joint constrained information theoretic
optimization. Through algebraic manipulation, Lagrangian re-
laxation, and direct approximation we proposed a method
of approximate scheduling that ultimately results in a sensor
being compelled to move by two competing forces: One based
on greedily maximizing information gain, and one based on
physicomimetics that acts to keep sensors apart and promote
region exploration in just the correct manner.

In this section, we illustrate how the combination of these
forces promotes the correct platform behavior and that the
individual forces themselves are not sufficient. Specifically, we
compare both qualitatively and quantitatively the surveillance
performance of a network of sensors with three different
scheduling algorithms: (a) The proposed Combination of

Information Theoretic Forces and Physicomimetic Forces,
which provides a balance between information seeking behav-
ior and explorative behavior and is connected directly with the
optimal multiplatform scheduling method, (b) A purely Infor-
mation Theoretic Method, which takes actions that maximize
information gain (only), and (c) A purely Physicomimetic
Method, which maintains separation between sensors using
the repulsive force (only). Figure 4 shows steady-state platform
positioning of 500 platforms under each method.

3) Monte Carlo Simulation of Performance: We again
display the performance of the scheduling algorithm based on
(a) the number of true targets detected, and (b) the number of
false targets reported. Figure 5 shows the performance versus
the number of platforms in comparison to the behavior of the
two constituent components alone.

This figure shows that the proposed method effectively
combines the strengths of the constituent methods. The physi-
comimetic method enforces collaboration and explorative be-
havior by encouraging platforms to maintain spatial separation.
When used alone, this results in good detection capability
but poor tracking capability, as once a target is found there
is no impetus to continue to follow its motion. Furthermore,
spurious detections are not tracked down through reinterro-
gation, resulting in more false targets. Conversely, the in-
formation theoretic method encourages exploitative behavior.
When used alone, this results in poor detection capability
but good tracking capability. Platforms tend to cluster around
known targets and track them very well but do not have
the impetus to look for new targets in unsurveyed regions.
False targets are minimized but real targets are less likely
to be found. The proposed method, which combines these
two forces, as motivated by the approximation to the joint
constrained information theoretic optimization, manages to
use the strengths of both of the constituent methods by both
exploring and exploiting in just the right ratio.

VI. CONCLUSION

This paper has addressed the problem of sensor management
for a large network of dynamic sensors. The method presented
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(a) Steady-state positioning of platforms con-
trolled by the physicomimetic force only.
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(b) Steady-state positioning of platforms con-
trolled by the information theoretic force only.
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(c) Steady-state positioning of platforms con-
trolled by the combination physicomimetic and
information theoretic forces.

Fig. 4. The combination of information theoretic forces and physicomimetic forces drives the sensors to behave in a manner that combines the explorative
nature of physicomimetics and the exploitative nature of information theoretic optimization.
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Fig. 5. Performance of the proposed method versus number of platforms in terms of true targets detected and false targets reported. For comparison purposes,
the performance of each of the constituent forces (the physicomimetic force and the information theoretic force) are included. As can be seen in the figures,
the combined force method significantly outperforms each of the constituent methods. In fact, the performance of the constituent methods at 500 platforms
is similar to the combined method with 50-100 platforms.

is a novel combination of particle filtering for nonparametric
density estimation, information theoretic measures for com-
paring possible action sequences, and artificial physics for
providing approximate cooperation between sensor nodes.

Future work in this area includes the extension of the
methods to long-term (non-myopic) scheduling. In a man-
ner analogous to multisensor scheduling, (naive) multi-step
scheduling results in an exponential explosion of potential
actions. Therefore, principled approximation methods (perhaps
domain-specific) must be developed for tractable implemen-
tation. As alluded to earlier, some work has been done in
extending the information theoretic scheduling metrics to the
multi-step setting, but has focussed mainly on the single
platform setting.
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