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Abstract—Sleep apnea is a breathing disorder where a
person repeatedly stops breathing in sleep. Early detec-
tion is crucial for infants because it might bring long term
adversities. The existing accurate detection mechanism
(pulse oximetry) is a skin contact measurement. The exist-
ing non-contact mechanisms (acoustics, video processing)
are not accurate enough. This paper presents a novel
algorithm for the detection of sleep apnea with video
processing. The solution is non-contact, accurate and
lightweight enough to run on a single board computer.
The paper discusses the accuracy of the algorithm on real
data, advantages of the new algorithm, its limitations and
suggests future improvements.
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Index Terms—sleep apnea, video processing, bio medi-
cal engineering, pattern recognition

I. INTRODUCTION

A. Sleep Apnea

Sleep Apnea [1, 2] is a sleeping disorder caused by
the interruption of breathing during sleep. An affected
individual may stop breathing for a short time. Repetitive
occurrence will result in low blood oxygen content which
can lead to other complications. It can affect people of
any age, but infants with this condition it can have
serious adverse effects. If untreated it could have long
term adverse affects on the infant. Thus early detection is
crucial.

There are two forms of Sleep Apnea – obstructive sleep
apnea (OSA) and central sleep apnea. Obstructive sleep
apnea occurs because of a physical disturbance to the
nasal passage. Central sleep apnea occurs because of a
neurological disorder.

B. Risk groups

The general risk groups [1] of sleep apnea condition
are over weight people, males with long necks, people
with abnormalities in the neck. Down Syndrome has a
correlation with sleep apnea in both adults and children.
Children with large tonsils are also a risk group [1].

Premature babies have a higher risk of sleep apnea
and therefore this paper proposes a solution for that risk
group.

1*Equally contributing authors

C. Effects
Fluctuations in the blood oxygen levels, increased heart

rates, elevated blood pressure and an increase of the risk
of strokes are effects of sleep apnea. Mood changes and
impaired concentration could be observed in sleep apnea
victims.

When sleep apnea occurs in an infant [3], these effects
(mainly the dip in blood oxygen level) can harm the brain
growth causing long term effects.

II. AVAILABLE SOLUTIONS

A. Pulse oximetry
Pulse oximetry [4] is a technique of measuring the oxy-

gen concentration of the blood. If a child is suffering from
OSA his/her blood oxygen level drops suddenly. Sometimes
the drop in the blood oxygen level could be a result of
some other problem as well. But still, since the biggest
problem with OSA is the reduction of the oxygen supply
to the brain, pulse oximeters are good enough as an OSA
detection technique.

Pulse oximeters should be connected to the skin with
underlying veins present. Usually, they are connected to
the fingers in adults. But for infants, they are connected
to the earlobes.

B. Acoustics
Acoustic techniques [5] used to detect OSA consists of

microphones and sound processing. The microphones tries
to sense the sound of the breathing of the infant. These
sound signals are then processed to identify anomalies in
the pattern.

The disadvantage of this technique is that the sound
of breathing is of low strength and therefore the noise in
the background can make it very difficult to analyze the
breathing sound.

C. Video Processing
Feasibility of using video analysis to detect sleep apnea

has been proved through manual analysis [6]. Later
works attempt to automate this analysis.

• Individual pixel time series analysis [7]
The approach is to find the rate of breathing by
the Fourier transform of the time series of the grey
scale values of a set of pixels. This algorithm is
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sufficient for cases where the only movement in the
video is breathing. External disturbances will result
in anomalous readings when using this technique.

• Regional average colour intensity time series
analysis [8]
The algorithm is based on keeping track of the total
intensity of a region of interest. The problem with
this algorithm is that it does not take into account
any actual shape of the infant. The intensity of the
region can change drastically with lighting condition
changes. These changes are taken as false positives
in the algorithm.

These approaches do not give accurate results because
they do not take into account the fact that breathing
pattern of a baby is clearly seen through the movement of
some parts of the body.

III. PROPOSED SOLUTION

The solution consists of 3 steps : (1) Identifying the
infant, (2) measure breathing pattern, (3) detect anomalies
in breathing pattern. Each step is described in detail in
this section.

The infant identification is done by training a custom
built neural network. Breathing pattern measurement
utilized a modified version of canny edge detection algo-
rithm for robustness and a novel algorithm for finding
the breathing cycles. The anomalies are detected by a
threshold for longer time intervals between breaths.

A. Infant detection

The breathing pattern detection algorithm is applied
on a localized region. This region of interest is identified
using a convolution neural network. This information is
used to rotate the camera using the servo motors as
intended, in order to cover the whole region of interest
(stomach region), after which the breathing pattern could
be analyzed.

For our case, we need to only identify the probability of
existence of an infant in the frame (Pc) and the localization
information (width (bw) and height (bh) of the infant in
the picture in pixels and the coordinate of the center of
the infant (bx,by)). Therefore, we defined the target label
y as in Eq. (1).

y=


Pc
bx
by
bw
bh

 (1)

We created a data-set that contains images of infants
with age below 6 months and labeled each image with
previously defined parameters. Also, some random images
that do not contain any infant were added and labeled with
Pc = 0. These images with infants and without infants
were distributed with a ratio of 3:1 in the data-set.

The neural network Fig. 1 consist of convolution and
max pooling layers to activate on interesting regions and
reduce the complexity. A deeper network is not necessary
because we need to identify only a single class. Then the
output feature matrix of those layers was flattened. Dense
layers are used to predict the target label y.

Fig. 1. Neural network model

The dataset was divided into validation set and training
set with 1:4 ratio. Training data were used to train the
model with batch size of 64 for 1000 epochs.

After training, this model can be used to localize the
infant in a given image.

B. Breathing pattern analysis

1) Edge detection: The 3 colour video input of 8 bit
depth is converted into the greyscale video G(t)[H×W]. The
grey-scale video is fed to a modified version of Canny
edge detection algorithm [9, 10]

The first step of the algorithm is to blur the image using
a Gaussian kernel of size 5×5 to filter the noise that can
give false positives as edges. The kernel Kblur is used to
convolute as per Eq. (2).

Kblur =
1

159


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2


G1(t)=G(t)~Kblur

(2)

Then the derivatives of this grey-scale intensity matrix
is obtained along x and y axes by convolution with Kdi f f x
and Kdi f f y kernels as in Eq. (3).

Kdi f f x =
−1 0 1
−2 0 2
−1 0 1


Kdi f f y =

 1 2 1
0 0 0
−1 −2 −1


Dx(t)=G1(t)~Kdi f f x

D y(t)=G1(t)~Kdi f f y

(3)

By considering these two matrices to contain the vec-
tor components of the gradients, the resultant gradient
vectors for (t, x, y) is calculated as the matrice D(t) which
contains the magnitudes of the particular vectors and θ(t)



which contains the angles of the particular vectors are
calculated by Eq. (4).

D(t, x, y)=
√

Dx(t, x, y)2 +D y(t, x, y)2

θ(t, x, y)= tan−1 D y(t, x, y)
Dx(t, x, y)

(4)

The gradients are discretized into 4 directions as{[
0,
π
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The θ(t) matrix is replaced by

{
0, π4 , π2 , 3π

4
}

for convenience.
Non-maximum suppression [11] is applied on these direc-
tions to find thin edges from these gradient matrices.

Let the thin edges obtained be E thin(t)H×W . This matrix
undergoes a threshold step to generate the final edge
matrix E(t)H×W . Thresholding step requires two threshold
values for D(t, x, y) as Thigh(t) and Tlow(t). These are
calculated by using the mean (µ(t)) and the standard
deviation (σ(t)) of the thin edge matrix as per equations
given in Eq. (5).

µ(t)=
1

H×W

x=W ,y=H∑
x=1,y=1

E thin(t, x, y) (5a)

σ(t)=
√√√√ 1

H×W

x=W ,y=H∑
x=1,y=1

(E thin(t, x, y)−µ(t))2 (5b)

Thigh(t)=µ(t) +0.5σ(t) (5c)

Tlow(t)=µ(t) −0.5σ(t) (5d)

Algorithm 1 Edge threshold algorithm
1: for x ∈ [1,W] do
2: for y ∈ [1,H] do
3: if E thin(t, x, y)< Tlow(t) then E(t, x, y)= 0
4: else if E thin(t, x, y)> Thigh(t) then E(t, x, y)= 1
5: elseE(t, x, y)= N A
6: end if
7: end for
8: end for
9: for x ∈ [1,W] do

10: for y ∈ [1,H] do
11: if Tlow(t)< E thin(t, x, y)< Thigh(t) then
12: if ∃(x0, y0) such that (x0, y0) 6= (x, y),‖x − x0‖ ≤

1,‖y− y0‖ ≤ 1,E(t, x0, y0)= 1 then E(t, x, y)= 1
13: elseE(t, x, y)= 0
14: end if
15: end if
16: end for
17: end for

The edge thresholding [10] is done by Algorithm 1
which first recognizes the pixels with a gradient more than
Thigh(t) as edges and the pixels with a gradient less than
Tlow(t) to not be edges. Then the remaining pixels are

categorized into edges only if they have a neighbouring
edge pixel.

Finally, the edge matrix E(t)H×W is obtained. This could
be visualized as Fig. 2.

E(t,x,y) =
{

1 if E(t,x,y) is an edge.
0 if E(t,x,y) is not an edge.

}
2) Choosing the area of interest: First the region of

interest A0 is chosen. This region is marked in Fig. 2.

(x, y) ∈ A0

x ∈ [x0, x1], y ∈ [y0, y1]

Fig. 2. The region of interest

These values could be obtained by the relationships
given in Eq. (6) with the neural network output.

x0 = bx −0.5bW (6a)

x1 = bx +0.5bW (6b)

y0 = by −0.5bH (6c)

y1 = by +0.5bH (6d)

3) Center of gravity tracking: The centroid C0(t) =
(xc0(t), yc0(t))) of the edges in A0 is calculated for every t
by Eq. (7).

xc0(t) =
∑

(x,y)∈A E(t, x, y)× x∑
(x,y)∈A E(t, x, y)

(7a)

yc0(t) =
∑

(x,y)∈A E(t, x, y)× y∑
(x,y)∈A E(t, x, y)

(7b)

Special case : (xc0(t), yc0(t))=
( x0 + x1

2
,

y0 + y1

2

)
when

∑
(x,y)∈A

E(t, x, y)= 0

4) Subspace filtering: Then the velocity of the centroid
v(t) is calculated by,
v(t) = (xc0(t) − xc0(t−1))i+ (yc0(t) − yc0(t−1)) j

The direction along which the velocity of the centroid
v(t) lie is calculated using the Principle component
analysis as follows,



Write v(t) as a row vector calculated by Eq. (8).

v(t) =
(
v(t).i v(t). j

)
v(t) =

(
vx(t) vy(t)

) (8)

Make a matrix by taking 10 such readings and arrang-
ing them as rows in Eq. (9).

V(t) =



vx(t) vy(t)
vx(t−1) vy(t−1)
vx(t−2) vy(t−2)

.... ...
... .....

vx(t−9) vy(t−9)

 (9)

The row means are calculated by Eq. (10).

vx(t) =
1

10

9∑
i=0

,vx(t−i) (10a)

vy(t) =
1

10

9∑
i=0

vy(t−i) (10b)

Then the difference matrix D(t) and the co-variance
matrix C(t) are calculated by Eq. (11), and Eq. (12).

D(t) =V(t) −V(t) =



vx(t) −vx(t) vy(t) −vy(t)
vx(t−1) −vx(t) vy(t−1) −vy(t)
vx(t−2) −vx(t) vy(t−2) −vy(t)

.... ...
... .....

vx(t−9) −vx(t) vy(t−9) −vy(t)

 (11)

C(t) = DT
(t).D(t) (12)

C(t) is decomposed into C(t) = P(t)D(t)P−1
(t) by the eigen

value decomposition to give the matrices in Eq. (13).

P(t) =
(
w1x(t) w2x(t)
w1y(t) w2y(t)

)
D(t) =

(
λ1(t) 0

0 λ2(t)

)
(13)

Here the P(t) has the eigen vectors,

w1(t) = w1x(t) i+w1y(t) j

w2(t) = w2x(t) i+w2y(t) j

D(t) has their corresponding eigen values λ1(t) and λ2(t).

The bigger value of λ1(t) and λ2(t) is chosen (let it be
λ1(t) ) and the corresponding eigen vector w1(t) gives the
direction of the breathing.

The unit vector along this direction is calculated by
dividing the vector by the second norm in Eq. (14).

u(t)=
w1(t)

‖w1(t)‖
(14)

Now we have u(t) and v(t). Projecting the velocity vector
in the unit vector of direction as in Eq. (15) to give a scalar
parameter s0(t) that can be used to determine breathing.
But it has a coarse variation with time as in Fig. 3.

s0(t) = u(t).v(t) (15)

Fig. 3. s0(t) versus t

5) Smoothing: s(0)t undergoes two smoothing tech-
niques in Eq. (16) to give s1(t) (Fig. 4) which is smoother
and corresponds to the actual breathing pattern of the
infant.

s1(t) ← low pass filtered s0(t)

s1(t) = s0(t) ×0.8+ s0(t−1) ×0.2
(16)

Fig. 4. s1(t) versus t

6) Detecting the breathing intervals: The peaks are
found using the technique,

s1(t) > s1(t−1) and s1(t) ≤ s1(t+1) ⇒ s1(t) is a peak.

The identified peaks are marked in Fig. 5 and the time
between them are considered to be breathing intervals as
shown in Table I.

Fig. 5. s1(t) with peaks marked

TABLE I
BREATHING TIME INTERVAL REPORT

Breath number Time for cycle / (ms)
1 2200
2 1830
3 1950
4 2050
... ...



C. Anomaly detection in the breathing pattern

The infants can showcase periodic breathing pauses up
to 10 seconds and it is not a health concern. A pause of
more than 15 seconds would be a serious concern and could
be categorized as sleep apnea [1].

The proposed solution considers a window of 200 sec-
onds (approximately 100 breaths). The algorithm rates
the severity of condition as the number of high interval
pauses. That is, the number of pauses more than 15
seconds during that interval. The severity value of each
window is given as the output.

IV. IMPLEMENTATION OF THE SOLUTION

A. Implementation

The full program and algorithms were implemented
using Python programming language, open-CV library
[10], sk-learn library [12], numpy numerical computation
package and matplotlib was used for all the output dia-
grams.

The hardware used for testing was raspberry pi single
board computer. A raspberry pi camera working at 720p
was used for video input and TowerPro SG90 servo motors
were used to rotate this camera as per the output of the
infant localization network.

B. Performance

The implemented system could work in real time. The
algorithm is lightweight enough to run on a single board
computer with 1.0 GHz processor and 1 GB RAM. The
implementation does not use the GPU.

The system performed in real time for a 24 frames per
second 720p video feed on the Raspberry pi 3 model B
single board computer.

V. TESTING

Testing was done in three steps (1) Infant detection, (2)
Breathing pattern analysis and (3) Anomaly detection.
The video dataset was prepared by recording 8 infants’
breathing patterns in the hospital. Each video was approx-
imately 20 minutes. Four infants had sleep apnea and four
did not. The video was manually marked for testing.
Another dataset (1000 images including 200 baby images)
was created (by obtaining images from Google images
and marking them) to train and test the infant detection
algorithm.

A. Infant detection

In order to test the algorithm, an area of interest (box)
was manually marked for each frame. Then, the actual
(manually marked) area of interest was compared with
the area marked by the algorithm. If the actual area
was within the marked area and the ratio of the areas
was above 60%, then the frame was classified as correctly
marked (accuracy = 1), and if not it was incorrectly marked
(accuracy = 0). The accuracy was calculated as the average
accuracy of all the frames.

B. Breathing pattern analysis

The videos were analyzed and the high and the low
points of the stomach were marked manually. The portion
between a high and low point was considered to be a single
segment. Thus two contiguous segments make up a com-
plete breathing cycle. Then the peaks that were marked by
the algorithm was superimposed with the breathing cycles.
If there was exactly one peak per breathing cycle, then
the output of the algorithm was considered to be correct
for that cycle (accuracy = 1), otherwise the output was
considered to be incorrect for that cycle (accuracy = 0).

C. Anomaly detection

The manual markings of data was compared with the
algorithm results to categorize the algorithm results into
four categories as true positive (TP), false positive (FP),
true negative (TN) or false negative (FN). The detection
accuracy ratio (DAR) and false alarm ratio (FAR) were
calculated as in Eq. (17).

DAR = TP
TP +TN

, F AR = FP
FP +FN

(17)

D. Percentile accuracy of tests

TABLE II
PERCENTILE ACCURACY OF TESTS

Test Accuracy
Infant detection 90%

Breathing pattern analysis 86%
The detection accuracy ratio 80%

False alarm ratio 14%

Table II shows that the baby detection algorithm has
a very high accuracy. But this accuracy requires good
lighting conditions. Breathing pattern recognition (and
therefore anomaly detection) is of comparable but less
accuracy because sometimes the baby’s movement is not
happening only because of breathing.

VI. DISCUSSION

Proposed solution is non-intrusive and non-contact. This
makes it convenient for the patient as well as the medical
staff. The algorithm is automated than the previous work
found as the previous algorithms require human interven-
tion to detect interesting regions.

The algorithm is lightweight and can run on a cheap
single board computer. The cost of the system is very low.

The modified canny edge detection algorithm is robust
than the standard canny edge detection algorithm because
of adaptive thresholding. The new breathing detection
algorithm is accurate than the existing algorithms.



VII. FUTURE WORK

The algorithm performance could be increased by imple-
menting it in parallel so that the single board computers
can process 1080p video input in real time. This will allow
more accurate and precise results.

Current system requires periodic update of area of
interest by the neural network to provide error free output
when the infant moves/turns. A reactive procedure could
be implemented in place of this by an intelligent algo-
rithm.

The accuracy of the breathing pattern recognition could
be improved by by fusing multiple areas of interest.
The accuracy of the anomaly detection algorithm could
be improved by incorporating a dataset consisting the
breathing patterns of healthy infants and infants suffering
from sleep apnea.

The proposed solution should be tested with medical
supervision, benchmarked against previous work assessed
for standards before deployment.
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