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Abstract—Resource management is one of the most indispens-
able components of cluster-level infrastructure layers. Users of
such systems should be able to specify their job requirements
as a configuration parameter (CPU, RAM, disk I/O, network
I/O) and have the scheduler translate those into an appropriate
reservation and allocation of resources. YARN is an emerging
resource management in the Hadoop ecosystem, which supports
only RAM and CPU reservation at present.

In this paper, we propose a solution that takes into account the
operation of the Hadoop Distributed File System to control the
data rate of applications in the framework of a Hadoop compute
platform. We utilize the property that a data pipe between a
container and a DataNode consists of a disk I/O subpipe and a
TCP/IP subpipe. We have implemented building block software
components to control the data rate of data pipes between
containers and DataNodes and provide a proof-of-concept with
measurement results.

I. INTRODUCTION

Heterogeneous compute clusters can be easily established
using physical machines incorporating memory, disks and
powerful CPUs to offer Information and Communications
Technology (ICT) services. Hadoop [1], [2], [3], [4] is a
software framework that has been developed to satisfy the need
of processing data in the scale of petabytes/day (i.e., big data
[5], [6]) with the use of resources offered by compute clusters.

The design of Hadoop considers several factors such as
reliability, scalability, programming model diversity, flexible
resource model etc [4]. The popularity of Hadoop is mainly
due to a design decision that allows parallel and distributed
computing meanwhile it hides a complexity from users [2], [3],
[7]. Originally, Hadoop consisted of a distributed file system
and a MapReduce processing framework. Later on, the need
for supporting different processing paradigms was recognized
and YARN was introduced [4], [8].

Application layer software (customer experience manage-
ment, operation support system, customer care are typical
examples in telecommunication environments) use the services
of the infrastructure layer (e.g. Hadoop) and they together
reserve resources through the platform (OS, kernel, firmware,
etc.), like CPU, RAM disk I/O and network I/O. Scheduler
translates those reservations into an appropriate allocation of
resources [9].

Job scheduling is an additional task of resource man-
agement [4], [10], [11], [12], [13], which is one of the
most indispensable components of cluster-level infrastructure
layers. YARN [8] is a distributed resource management system
for resource allocation in compute clusters [2], [4] and job
scheduling, in the particular case of Hadoop MapReduce. It is
recognized that job scheduling is a challenging issue because
various factors (quality of service, performance, etc) should be
taken into consideration to improve the degree of satisfaction
of users.

In mobile network environments network equipment ven-
dors are increasingly facing the challenge that their solutions
and products need to be deployed in a so called white box
scenario, where they run on the same physical infrastructure as
applications of the mobile operator, and even more, they share
some of the cluster level infrastructure (e.g. shared Hadoop
cluster). In such a scenario, a typical Big Data application
may consist of multiple jobs that are executed a distributed
manner (up to several thousands machines). Some customers
may require a data rate guarantee because jobs should be
finished by a certain deadline. Therefore, the provision of the
quality of service regarding a data rate guarantee may play a
key factor to attract customers. However, YARN (up to version
2.5.1 [8]) only supports the reservation of memory and CPU
in compute clusters at present.

In this paper, we exploit the special feature of the
Hadoop Distributed File System –HDFS (which is the part of
Hadoop [1]) and the capability of Linux Traffic Control –LTC
(which was developed under Linux kernels 2.2 and 2.4 and
now is incorporated in the newest Linux kernels as a module)
subsystem to control the data pipes of containers to HDFS
DataNodes in YARN. We propose building block software
components that can be integrated into YARN to control the
data throughput of applications. We use ZooKeeper [14] to
maintain persistent information to control the throughput of
data pipes.

The rest of this paper is organized as follows. In Section II,
some technical backgrounds on Hadoop, HDFS and resource
management are presented. In Section III, a proposal is de-
scribed. In Section IV, a proof-of-concept is illustrated with
measurement results. Finally, Section V concludes our paper.
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II. TECHNICAL BACKGROUND

In this Section, we provide a short summary of features
and properties we use to construct our proposed solution.

A Hadoop (version 2.0 or higher) compute cluster normally
consists of four main groups (one hardware group and three
software groups) that are illustrated in Figure 1:

• The hardware infrastructure includes a platform of
machines/servers with CPUs and disks, and a network
that connects the machines. The hardware infrastruc-
ture and the operating systems (running directly on
physical or virtual machines) provides resources for
the Hadoop system and applications.

• The Hadoop Distributed File System (HDFS) with
functional entities (NameNode and DataNodes) is a
distributed file system that runs on physical or virtual
machines. It stores large data sets (files of gigabytes
to terabytes) and provides streaming data access to
clients and applications.

• The resource management group with functional en-
tities (Resource Manager, NodeManagers, Applica-
tionMasters) is responsible to process the resource
requirement of applications, and decides where (which
physical machines) a specific application should run
based on the knowledge of the hardware infrastructure
and the locations of blocks in the HDFS storage.

• Applications analyze Big Data and do some compu-
tations on Big Data. One type of applications use
MapReduce, that is a programming model for data
processing [3], [2] and imposes a typical workload on
top of HDFS consisting of 3 phases associated with
the 3 phases of the processing paradigm, map, shuffle
and reduce. Another type of applications of the HDFS
is HBase, which is a distributed, column-oriented
database to support real-time read/write random access
to very large datasets [2], [3]. A systematic survey of
application types and their characteristic workload on
HDFS is beyond the scope of this paper.
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Fig. 1. Main components in a Hadoop Compute Platform

A. Operation of HDFS

In the Hadoop, NameNode and Datanodes are functional
components that realize the Hadoop Distributed File System
to store files and retrieve blocks of data [2], [3]. If used as
a file system, then files are splitted into blocks and stored in
Datanodes. To ensure the reliable service against failures, the
replication mechanism may be applied to allow the placement
of the same blocks in different Datanodes. The NameNode is
responsible for storing the filesystem tree, the metadata of all
the files and directories in the HDFS file system. Information
about the locations of the blocks of a specific file is also
maintaned by the NameNode.

To access/read a specific file, an HDFS client initiates a
request to the NameNode to enquire about the list of Datanodes
that stores replicas of the blocks of the file. Then, the HDFS
client chooses a Datanode that stream data blocks to the client
(see Figure 2). In HDFS all communications and data transfers
are performed using the TCP/IP protocol stack.

Applications

DataNode Disk

Server

TCP/IP I/O

Fig. 2. Data pipes between an application and a DataNode

It is worth emphasizing that the streaming data of a
specific file block is conveyed through two pipes (as illustrated
in Figure 2): a TCP/IP pipe (through either a network or
the loopback interface of a Datanode’s machine) between an
application and a DataNode, and a disk I/O pipe between a
DataNode and a certain disk.

B. Resource Management

YARN decouples the programming model from the re-
source management infrastructure [4]. In the YARN architec-
ture there are several important entities: Resource Manager
(RM), Node Managers (NM), Application Masters (AM).
There is a special term “container” that is the collection
of resources (CPU and memory) centrally assigned by the
RM. In YARN, negotiations regarding resources are performed
between a client, its ApplicationMaster and RM, and decisions
are taken by RM.

However, the resource usage related to HDFS storage is not
covered by YARN, which may cause performance problems
because certain types of applications such as MapReduce
have HDFS-intensive resource consumption. Furthermore, the
identification of HDFS data pipes is hidden from other resource
management functions, which causes a challenge for resource
management. We describe our approach in Section III to handle
these problems.

III. A PROPOSED SOLUTION

In this Section, we propose a solution that allows service
providers to control the data rate (customer’s QoS requirement)
of applications from an HDFS storage in Hadoop compute
clusters.



Fig. 3. Control the rate of pipes

Quality of Service (QoS) is defined by Recommendation
ITU-T G.1000 [15] as the collective effect of service perfor-
mances that characterize the degree of satisfaction of a user.
There are several QoS criteria (speed, accuracy, availability,
reliability, security, simplicity and flexibility) [16] that serves
as the base for setting QoS parameters and performance
objectives. Furthermore, there are four viewpoints [15] of
QoS from the perspective of customers and service providers:
customer’s QoS requirements, QoS offered by a provider,
QoS achieved by a provider, QoS perceived by a customer.
It is worth mentioning that mechanisms (rules, procedures,
policies) should be deployed in the infrastructure of service
providers to provision QoS for customers.

Today YARN is not supporting yet metrics like de-
lay/latency of the query execution, which would be very
useful to specify/enforce from the viewpoint of an end user or
application. YARN is dealing with amount of CPU and RAM.
The translation from the language of CPU cycles and RAM
gigabytes to metrics like query execution type is far from trivial
and deep application insight/fingerprinting is necessary, which
is subject for future work. Following the general principles
regarding the provision of QoS from the viewpoint of service
provider, mechanisms to control the data rate of applications
should include

• the specification of requirements of users (applica-
tions),

• Information about a compute cluster, i.e.,
◦ the maximum capacity of the resource of a

cluster (i.e., the maximum capacity of disk
I/O),

◦ the network topology and the network capacity
(i.e., the maximum capacity of network I/O
between machines) of a cluster,

◦ the amount of resource occupied by con-
tainers in a cluster, and the identification of
pipes between applications and DataNodes,
and amongst DataNodes,

• resource management policy (i.e., a strategy to allocate
resource) and decision procedures (admission control
and policing) performed by RM.

Within the YARN framework, a client submit a job to the
RM. The submission of a job contains the resource require-
ments for the container that will host the ApplicationMaster of
the client [2], [4]. ApplicationMaster is responsible to request a
set of containers to run its tasks on. An instance of Resource
class conveys the resource type requirements of containers.
Therefore, to support a new type of resource, Resource
class should be extended to contain the requirements of a new
resource type (e.g., the IOPS, the reads per second, the writes
per seconds, throughput).

Upon the arrival of requests for containers, RM should
perform an admission control procedure to check whether
current available resources are sufficient for the requested
containers. The decision by the admission control procedure is
based on the information about the capacity of the cluster, the
amount of resources occupied by the allocated containers in
the cluster and the resource requirement of containers that are
being requested by the ApplicationMaster of a specific client.

If the admission control allows the allocation of a container,
the ApplicationMaster sets up the ContainerLaunchContext
and communicate with the ContainerManager to start its al-
located container. The ApplicationMaster also monitors the
status of the allocated containers. If a task running on a
container finished, the ApplicationMaster will get updates of
completed containers.

A policing function is responsible to keep and guarantee
the required resource for the allocated containers. To control
the data rate, the operation of the Hadoop Distributed File
System (i.e., how files and blocks are streamed by DataNodes
to applications) is taken into consideration in what follows.

Since the streaming data of a specific file block is conveyed
through two pipes as illustrated in Figure 2,

• the enforcement of the I/O usage of containers and



Fig. 4. The time line of the flow execution

HDFS could be done at the HDFS DataNodes in the
machine level,

• all the I/O activities of tasks depends on the TCP
connections handled by HDFS datanodes,

• the throughput of TCP connections can be controlled
by Linux Traffic Control (LTC) –see Figure 3.

In Linux, queues1 can be setup to manage the bandwidth of
TCP/IP pipes. That is, filters can be specified to classify traffic
based on the source address, the destination address, and the
port numbers of TCP sessions, and/or u322 condition. Then,
different algorithms (e.g., Token Bucket Filter, Stochastical
Fairness Queueing, Random Early Detection) can be used to
control the rate of TCP/IP sessions [17].

Due to the decoupling of functionality, the opening of data
pipes (Figure 2) for the usage of the HDFS storage is not ex-
plicitly covered by the resource negotiation process. However,
applications like MapReduce intensively access the blocks of
big files stored in HDFS. Furthermore, the identification of data
pipes is hidden from other resource management functions and
can not be revealed at the beginning (e.g., which DataNode
is to be contacted for a certain data block by a specific
MapTask), which causes a challenge for resource management.
To configure LTC and control a TCP pipe, the information
about the existence of pipes must be obtained. For this purpose,
we either take the creation of pipes to the negotiation process
or implement a monitor function that senses the setup of TCP
pipes between containers and DataNodes. Figure 4 illustrates
the time line of the flow execution for the latter alternative with
the following durations from the aspect of controlling pipes:

• t1 is the duration between starting the container and
begin of checking TCP connections. Note that TCP
connections may be existing in this time interval.

• t2 is the duration needed to detect TCP connections.

• t3 is the duration to construct and submit new LTC
settings.

• t4 is the duration needed to configure LTC for a
DataNode.

1http://lartc.org/howto/lartc.qdisc.html
2a match on any part of a packet

• t5 is the latency between the start of control and
observable effect.

It will be shown in Section IV that the delay (T = t1 + t2 +
t3 + t4 + t5) are acceptable for certain cases (especially when
big HDFS blocks are streamed).

Fig. 5. Interface for DataNodes

Fig. 6. Interface in machines with a NodeManager

A. Interfaces

It is worth mentioning that there are a number of alter-
natives to implement mechanisms and procedures. Therefore,
our approach is to define clear interfaces between functions
and mechanisms and implement building-block functions (see
illustration in Figures 5 and 6 where interfaces and functions
for the exchange of information and setting LTC are shown):

• ConnectionMonitor maintains the information of
connections between container nodes and DataNodes.

• TrafficControlDataSubmitter submits data
collected by ConnectionMonitor to a persistent com-
ponent.
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Fig. 7. The flow of executions when TCP connections are detected

• TrafficControlDataCollector collects data
submitted by TrafficControlData and creates
the list of appropriate events.

• TrafficControlExecutor performs the con-
figuration of Traffic Control actions on devices
according to the list of events collected by
TrafficControlDataColletor.

Because the amount of persistent information and control
information to support the provision of QoS is huge, a Best of
Practice approach (to ensure a lean operation) is to define an
operation policy. For example, a limited number of container
classes (defined based on data rates) should be supported
for containers, or containers are allocated in each machine
based on the number of cores and data rates (i.e., preplanned
container classes based on cores and data rates).

Fig. 8. Data structure for storing LTC settings in ZooKeeper

B. Keeping the information of containers’s pipes with
ZooKeeper

The maintenance of traffic control parameters and changes
of the traffic control parameters requires a persistent data
structure that can be established with the use of Apache
ZooKeeper [14]. The ability to provide high availability and
high performant service in distributed systems (i.e., to handle

partial failures, to support loosely couple interactions) gives
the rationale behind the choice of ZooKeeper.

The following features of ZooKeeper are taken into account
in our design:

• Reading/writing data of zNode is atomic, appending
is not possible in ZooKeeper.

• A zNode can be either persistent or ephemeral. A
persistent zNode can be only deleted manually. An
ephemeral zNode, in contrast, will be deleted if the
client that created it crashes or simply closes its
connection to ZooKeeper.

• ZooKeeper deals with changes using watches. With
watches, a client registers its request to receive a one-
time notification of a change to a given zNode.

In this implementation ZooKeeper acts as a persistent layer
for storing and delivering LTC settings between nodes. Note
that only one ZooKeeper Server is needed for the operation
(of course, additional ZooKeeper servers can be operated to
increase the reliability). The data structure is illustrated in
Figure 8. All related traffic control data will be stored under
the /tcData root zNode. Each Datanode will register itself with
ZooKeeper server by creating /tcData/DNID OF DN where
ID OF DN is its identification, it can be the hostname or
the IP address of the Datanode.

In each NodeManager, ConnectionMonitor moni-
tors the traffic connections and constructs the content of
LTC settings and pass them to TCDataSubmitter. Then
TCDataSubmitter notify new demands to Datanodes by
creating new /tcData/DNID OF DN/NMID OF NM zN-
ode with LTC data settings (if this zNode is not existed) under
the zNode node of the corresponding Datanode or replacing
the data of this zNode with the new one.

In order to get new LTC settings, TCDataCollector
uses watches to collect data related to its Datanode. The first
watch is put its proper /tcData/DNID OF DN zNode for
tracking the creation/deletion of child zNodes (e.g. whether
we have new demands from new NodeManager node). A



new watch will be put on each new child zNode, so we can
get notifications about new demands from the corresponding
NodeManager. When changes are detected, the LTC settings
data will be processes by TCDataCollector. It retrieves
modifications by comparing with previous one and pass them
to TCRuleExecutor to set the LTC table.

IV. A PROOF-OF-CONCEPT

Our proposal has been implemented within the YARN
framework. The source codes of software components can be
obtained from [18]. Using machines with Intel Core i5-4670
CPU, 16GB DDR3 1600 MHz RAM memory and 1TB hard
disks, we have created a small Hadoop cluster to demonstrate
the capability of our building block software components.

In our testbed, we provide an illustration to control a data
rate for the following class of applications:

• a job consists of multiple tasks,

• the execution of a job can be divided into several
phases,

• the majority of tasks should be executed within a
specific phase, and few tasks span several phases,

• tasks belonging to one specific phase can be executed
in parallel, each of them require one container,

• there are HDFS intensive tasks. It is reasonable to
require that those tasks process data as streams of
bytes. HDFS intensive tasks that are simultaneously
executed require different HDFS data blocks.
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Figures 9 and 10 depict the TCP throughputs of two
containers that read data blocks from the same DataNode.
Note that the limiting rate setting in LTC is for the IP layer.
It is observed that container 1 that reads data blocks before
container 2 gets a higher throughput if no LTC is applied.
Note that disk I/O bottlenecks may happen due to certain
conditions. E.g., one cause of disk I/O bottlenecks is the
consequence of the large amount of disk blocks sequentially
read by applications from an HDFS storage. In such a case,
applications that read a huge volume of data blocks from
disks (I/Os per second and the amount of bytes per I/O are
high) may greedily seize the whole disk I/O capacity. The
application of LTC practically eliminates the disadvantage of
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the later born data pipes and can control the throughput of
pipes in the comparison with the original YARN (where is
no any limit for pipes). Note that Figure 10 also shows the
greedy nature related to the I/O activity: applications with the
sequential reads of data blocks tend to capture all available
I/O capacity during the uncontrolled period if there is a room
to increase its I/O activity. From the perspective of resource
management and containers that read a huge volume of data,
the uncontrolled period of pipes (i.e., the delay denoted by T
in Figure 10 from the start of containers until the LTC has
the impact on the data rate of containers) is negligible. As we
mentioned earlier, the information about the establishment of
data pipes should be a part of the QoS negotiation process to
eliminate the uncontrolled period, which will be done in our
future work.

V. CONCLUSION

We have presented an approach to take into account the
HDFS feature to control the throughput of data pipes between
applications and HDFS DataNodes in the YARN framework.
Some basic building block functions have been implemented to
exploit the property (data pipes between DataNodes and con-
tainers) of the HDFS architecture. It has been shown through
measurement results that the throughput of applications (jobs,
containers) can be controlled within YARN using our building
block components.

At present we are working on a prototype to extend YARN.
The prototype will include the specification of I/O rates by
applications, the admission control procedure, and scheduling
and management policy along with building block software
components described in this paper.
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