
A Model to Enable Application-scoped Access 
Control as a Service for IoT Using OAuth 2.0 

Federico Fernández, Alvaro Alonso, Lourdes Marco, Joaquín Salvachúa 

Abstract—Access Control is crucial for security management, 
but in the context of the Internet of Things it cannot be 
implemented the same way as traditional systems do. Indeed, 
devices that make the Internet of Things impose some constraints 
that encourage the design of new access control mechanisms, 
which should provide flexibility of configuration, as well as 
support several authorization scopes at the same time, yet being 
computationally light, dynamic and scalable in order to be 
ready for the forthcoming Cloud Computing paradigm. In this 
paper we propose an authorization model that is based on the 
OAuth 2.0 protocol. From the point of view of the identity 
provider, this model allows managing roles and permissions 
for an application-scoped authorization, to enable more flexible 
scenarios in which multiple tenants take part. With regard to 
devices, the OAuth 2.0 makes authorization extremely light, 
because all the required information is provided with a token. 
Considering all this, authorization management is completely 
delegated to an external system, so that an as-a-service access 
control mechanism is provided. The proposed model complies 
with the security, flexibility and performance requirements that 
are needed in the Internet of Things paradigm. 

I. INTRODUCTION 

Security management is an essential issue in all digital 
contexts, but in the Internet of Things (IoT) it poses even 
a more critical challenge. Sensors, actuators and, in general, 
devices that make the IoT serve somehow as connecting 
points between the real, physical world and the digital, ever-
connected Internet; thus, the IoT will not settle unless man­
agement and control over the access of those devices to the 
rest of the Internet is ensured right from the design phase. 

In most IoT use cases, such as in applications of Smart 
Cities, the devices need to access resources in a service, either 
to publish information (sensors) or to read it and trigger some 
reaction (actuators). Security of these interactions should be 
guaranteed, but not at all costs. Instead, the system providing 
access control over those resources should also take into 
account the constraints that IoT devices impose, which add 
to the access control requirements of their traditional, non-IoT 
counterparts. Among them are their low computing capabilities 
and their remote, usually difficult-to-access location. 

Multi-tenancy should also be featured, so that access control 
does not only depend on the type of device. This way, 
authorization to the given sensor or actuator would be granted 
or not depending on the application it is willing to access. 

Besides, flexibility requirements should also be taken into 
consideration, because different applications or even resources 
within an application may have different security requirements. 

The work that is related to this matter is analyzed in the 
following Section. We then in Section III describe in detail 
our solution. Finally, some conclusions and future work are 
discussed in Section IV. 

II. BACKGROUND 

Traditionally, security administration of large systems has 
been simplified by a Role-based Access Control approach 
(RBAC), which scales better than other previous models like 
Identity Based Access Control (IBAC) [1]. By treating roles 
and identity as characteristics of a principal, Attribute Based 
Access Control (ABAC) fully encompasses the functionality 
of both IBAC and RBAC, and can define permissions based 
on just about any security relevant characteristics [2]. A 
more flexible policy enforcement can be achieved constructing 
Flexible Data Access Control services [3]. 

With regard to IoT some approaches have used ABAC 
models, combined in some cases with the second version of 
the OAuth protocol (OAuth2) or the Constrained Application 
Protocol (CoAP), to protect the access to data [4] [5]. 

OAuth2 is an open authorization protocol with a simple 
and secure way to authenticate users and allow access to their 
protected data [6], giving the service with an access token. 
Authors of [7] propose an approach targeting HTTP/CoAP 
services to provide an authorization framework, which can be 
integrated by invoking an external OAuth-based Authorization 
Service (OAS). However, in the scenario we describe the IoT 
device acts as Resource Owner (using the OAuth2 terminol­
ogy), therefore the use case is slightly different. 

III. AS-A-SERVICE ACCESS CONTROL WITH OAUTH 2.0 

In this Section we first identify the requirements that the 
access control system must meet. Second, a description of 
the proposed architecture is provided, followed by a sample 
interaction flow of a typical use case. 

A. Requirements to be fulfilled 

According to the problem described in Section I, the de­
signed access control architecture should feature the following 
four characteristics: 



Device Service 

a ~ 

: 

J 

f^\— 
T +-*—, 

PEP 

MP 

E 
PDP 

3 

__^^ 
^ . 
i-M 

Service 

Fig. 1. As-a-service Access Control Architecture 

1) Application-scoped: The system should make it possible 
for different authorization policies to be enforced depending 
on the service that is to be accessed by the given IoT device. 

2) Client-independent: Access control should be provided 
the same way regardless the client that tries to access resources 
in the service. It should work both for highly constrained 
devices (like IoT devices) and heavy clients, such as web 
browsers or other back-end services. This way, interoperability 
between IoT and the rest of the Internet is guaranteed with a 
single access control architecture. 

3) Flexible: The service administrator should be able to 
define authorization policies to their service in a fine-grained 
way. Using a policy description language like XACML [8] 
is recommended. Besides, service administrators should be 
allowed to manage roles of both single devices and groups 
of devices, so that they can create a multi-tenant authorization 
scheme. 

4) Delegated: Detaching authorization operations from the 
rest of entities would provide computational lightness for 
clients (which is critical for IoT devices), as well as scalability 
and ease of remote configuration for the service administrator, 
because the whole authorization functionality is centrally 
provided. 

B. Proposed Architecture 

Figure 1 shows the architecture scheme of our model. We 
consider the following entities: an IoT device (we will just 
write Device), an application (i.e. a Service whose resources 
are willing to be accessed by the Device) and one of its 
administrators (the Service Admin), as well as an Identity 
Provider (IdP) and the Policy Administration, Decision and 
Enforcement Points (PAP, PDP and PEP). The last three are 
the components that make the widely known access control 
architecture [9]. Besides, we have included a Policies DB 
where policies are stored by the PAP and checked by the PDP. 

The IdP is a key component of the architecture. It is 
in charge of managing the credentials (usually a username 
and a password) of both the Service Admin, the Device and 
optionally any other user of the Service. Groups of devices and 
users may also be created in this component, so that complex 
authorization scenarios can be configured. 

Access control policies are defined by means of permissions 
and roles, which the Service Admin manages in the PAP. 

Permissions are usually composed by an action (e.g. an HTTP 
verb) and a resource of the Service. However, more complex 
policies may also be defined by means of a policy-description 
language like XACML. Roles are in turn sets of permissions, 
which may be assigned to the Device or to a group of devices 
in the IdP. Granting a role to a group of devices, rather than 
to a single device, has the benefit of linking a given role to 
the belonging to a certain group. For instance: devices from a 
neighborhood A in a Smart City application must be the only 
ones able to write data in the Service about neighborhood A; 
therefore, when one of those devices moves to a neighborhood 
B, removing it from the A-group is enough to deny its access 
to resources of their past neighborhood. Besides, roles are 
assigned to devices in the scope of the Service, so a given 
Device may have different roles depending on the application. 

It is important to highlight that, although policies and their 
relationships with roles are defined in the PAP, the mapping 
between users, devices and roles is made in the IdP. The 
Service must also be registered here. As a result of the 
registration, the Service Admin obtains the associated OAuth2 
credentials, which must be stored in the Device. 

When performing a request to the Service, the Device will 
make use of the Implicit OAuth2 Grant [10] to obtain an access 
token. During an authorization check, the PEP is the entity that 
uses this token to retrieve the roles assigned to the Device. 
Thereby, a mapping can be made between OAuth2 consumers 
and applications. The PDP fetchs the policies associated to 
those roles from the Policies DB, and decide whether or not 
access should be granted based on them. 

Note that one PEP is set for each Service, thus a transparent, 
as-a-service authorization is provided to the latter. Besides, the 
delegation of the authorization operations meets the computa­
tional restrictions that the Device imposes, because it should 
only have to implement an OAuth2 client. In fact, any entity 
implementing an OAuth2 client library is eligible for working 
as a client in this architecture, thus interoperability with other 
non-IoT systems is guaranteed. 

C. Sample Authorization Flow 

We now present a typical IoT use case to better illustrate 
the interactions between the modules we have presented in our 
model. Let us consider a scenario in which a Device publishes 
the data it collects in a back-end Service. Our objective is to 
add an access control mechanism that allows restricting access 
to that application depending on 1) the type of IoT device, 2) 
the resource that it is trying to access and 3) the action that 
it is trying to perform. A Service Admin is assumed to be 
registered in the IdP, with the needed rights to register new 
applications and manage policies in the PAP. 

The fist step consists on the registration and configuration 
of the Service and the Device. To do this, the Service Admin 
has to perform the following operations: 

1) Register the Service in the IdP, to obtain both the 
OAuth2 credentials for its application (i.e. the clientJd 
and client_secret) and those associated to its correspond­
ing PEP (i.e. the pep_username and pep _p as sword). 



2) Register the Device in the scope of the Service, to obtain 
the Device credentials (i.e. the device_username and 
device _password). 

3) Create the desired roles and policies in the PAP and 
define the relationships between them. The PAP will 
then store those entities and their relationships in the 
Policies DB. 

4) Grant the desired roles to the Device (in the scope of 
the Service) using the UP. To display the available roles, 
the IdP must send a request to the PAP. As it has been 
explained above, roles can be assigned to devices or to 
groups of devices, so the Service Admin may optionally 
manage groups of devices and assign roles to them 
(again in the scope of the Service). 

Once the environment is configured, the process to send a 
publish request from the Device to the Service consists on the 
following interactions: 

1) The Device sends a request to the IdP in order to 
create an OAuth2 token. The Device and the application 
credentials that were obtained during the registration are 
needed here. 

2) The Device sends the publish request to the Service, 
which includes in the authentication header the OAuth2 
token created in the previous step. 

3) The PEP module intercepts the request and extracts the 
token from the header. Then, it sends a validation request 
to the IdP to check whether the token corresponds 
to a registered device in the platform. The PEP is 
allowed to perform this validation in the IdP because 
it authenticated previously, using the PEP credentials 
obtained by the Service Admin at registration time. If the 
validation is rejected, the PEP sends an Unauthorized 
response to the Device. In case the validation succeeds, 
the IdP adds the public information of the Device to 
the response, which includes the roles that it has in the 
scope of the application in which the token was created. 

4) The PEP then sends an authorization request to the 
PDP, which includes the retrieved roles, the action that 
the Device is trying to perform and the resource that 
it is trying to access. Based on the policies that are 
stored in the Policies DB, the PDP takes the decision 
of either allowing or denying the access to the resource, 
and returns the verdict to the PEP. 

5) If the PDP has denied the access, the PEP will finally 
send an Unauthorized response to the Device. Other­
wise, it will forward the request of the Device to the 
Service, including the public information which was 
previously obtained from the IdP. This information can 
be useful for the Service when performing the needed 
actions. 

IV. CONCLUSIONS 

We have presented an architectural model that enables 
access control in IoT contexts. The use of the OAuth2 protocol 
makes this model interoperable with other RESTful services 
in the rest of the Internet, while also making the whole 

authentication mechanism extremely light for devices, since 
an OAuth2 token provides all the required information. 

Our approach reduces effort for IoT application developers 
to add an as-a-service authorization layer to their applications, 
because they only need to register their service in the IdP 
and deploy a PEP component, which is a generic component 
that can be reused for all services and usually may also be 
provided as part of the access control service. Besides, the 
fact that the access control service is completely external to 
services facilitates the configuration of authorization policies, 
since they are all managed from a central, single component: 
the PAP. 

As a future research line, this model should be implemented 
and validated. In cases when storing the OAuth2 credentials 
in the IoT device constitues an issue (e.g. access to the 
device could be compromised), an approach like using a 
different OAuth2 grant could be considered. Moreover, the 
whole process be made even lighter by supporting the CoAP 
protocol in the interactions in which the IoT devices take part. 

ACKNOWLEDGMENT 

The authors would like to thank the FIWARE project and 
its partners. Part of the ideas we propose in this paper have 
been developed in the scope of this European Project. 

REFERENCES 

[1] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, "Role-
based access control models," Computer, vol. 29, no. 2, pp. 38^47, 1996. 

[2] E. Yuan and J. Tong, "Attributed based access control (abac) for web 
services," in Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE 
International Conference on. IEEE, 2005. 

[3] Y. Zhu, D. Huang, C.-J. Hu, and X. Wang, "From rbac to abac: 
constructing flexible data access control for cloud storage services," 
IEEE Transactions on Services Computing, vol. 8, no. 4, pp. 601-616, 
2015. 

[4] M. Hemdi and R. Deters, "Using rest based protocol to enable abac 
within iot systems," in Information Technology, Electronics and Mobile 
Communication Conference (IEMCON), 2016 IEEE 7th Annual. IEEE, 
2016, pp. 1-7. 

[5] S. Kinikar and S. Terdal, "Implementation of open authentication 
protocol for iot based application," in 2016 International Conference 
on Inventive Computation Technologies (ICICT), vol. 1, Aug 2016, pp. 
1-4. 

[6] S. Emerson, Y.-K. Choi, D.-Y Hwang, K.-S. Kim, and K.-H. Kim, 
"An oauth based authentication mechanism for iot networks," in In­
formation and Communication Technology Convergence (ICTC), 2015 
International Conference on. IEEE, 2015, pp. 1072-1074. 

[7] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari, "Iot-oas: An 
oauth-based authorization service architecture for secure services in iot 
scenarios," IEEE sensors journal, vol. 15, no. 2, pp. 1224-1234, 2015. 

[8] "extensible Access Control Markup Language (XACML) 
Version 3.0." January 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (accessed: February, 
2017) 

[9] F. Turkmen and B. Crispo, "Performance evaluation of xacml pdp 
implementations," in Proceedings of the 2008 ACM workshop on Secure 
web services. ACM, 2008, pp. 37—44. 

[10] E. D. Hardt, "The OAuth 2.0 Authorization Framework," Internet 
Requests for Comments, RFC Editor, RFC 6749, October 
2012. [Online]. Available: http://tools.ietf.org/html/rfc6749 (accessed: 
February, 2017) 

http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://tools.ietf.org/html/rfc6749

