Automatic Configuration of Smart City Applications
for User-Centric Decision Support

Thu-Le Pham*, Stefano Germano!, Alessandra Mileo*, Daniel Kl'jemper§ and Muhammad Intizar Ali*
*INSIGHT, National University of Ireland, IDA Bussiness Park, Lower Dangan, Galway, Ireland
Email: {thule.pham, ali.intizar} @insight-centre.org
TDepartment of Mathematics and Computer Science, University of Calabria, Rende, Italy
Email: germano@mat.unical.it
iINSIGHT, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
Email: alessandra.mileo @insight-centre.org
§University of Applied Sciences Osnabriick, Lingen 49809, Germany
Email: d.kuemper@hs-osnabrueck.de

Abstract—Smart city applications in the Big Data era require
not only techniques dedicated to dynamicity handling, but also
the ability to take into account contextual information, user
preferences and requirements, and real-time events to provide
optimal solutions and automatic configuration for the end user.
In this paper, we present a specific functionality in the design
and implementation of a declarative decision support compo-
nent that exploits contextual information, user preferences and
requirements to automatically provide optimal configurations of
smart city applications. The key property of user-centricity of our
approach is achieved by enabling users to declaratively specify
constraints and preferences on the solutions provided by the
smart city application through the Decision Support component,
and automatically map these constraints and preferences to
provide optimal responses targeting user needs. We showcase the
effectiveness and flexibility of our solution in two real usecase
scenarios: a multimodal travel planner and a mobile parking
application. All the components and algorithms described in this
paper have been defined and implemented as part of the Smart
City Framework CityPulse '.

I. INTRODUCTION

Smart city applications require Internet of Things (IoT) dis-
covery and matchmaking techniques dedicated to dynamicity
handling. Information taken into account during the match-
making process originates from diverse data sources including:
data streams, city services, the user’s social context, situational
awareness (e.g., user location), preferences and application
configurations. The exponential growth in the availability of
information from numerous data sources raises several diffi-
culties in implementing, sustaining, and optimizing operations
and interactions among different city departments and services
[7]. There is a strong need for smart city application tools
which support easy development of smart applications.

The state-of-the-art for smart city frameworks has ma-
jor focus on existing smart city platforms and the existing
works are mainly in four key areas: (i) data acquisition
(ii) semantic interoperability, (iii) real-time data analysis and
event detection, and (iv) smart city application development
support. Among the existing frameworks such as PLAY [9],

Iwww.ict-citypulse.eu

iCore [4], and STAR-CITY [5], CityPulse [8] is the only
framework supporting all four previously mentioned features.
In additional to data acquisition and semantic interoperability,
the CityPulse framework provides a complete set of domain
independent real-time data analytics tools such as data feder-
ation, data aggregation, event detection, quality analysis and
decision support. The application development is supported
through a set of APIs provided by CityPulse. In this paper,
we focus on the decision making process, which is designed
and implemented within CityPulse framework.

The Decision Support component in CityPusle supports
the complex reasoning capabilities that are required in var-
ious smart city applications such as non-monotonic, non-
deterministic, and recursive reasoning. This component rep-
resents higher-level intelligence, strongly connects to user
application layer, and acts as a flexible interplay between
user-centric factors and dynamic aspects of the changing
environment within the city. Factors such as user interests and
reputation requirements are also considered in the decision
support process. The exploitation of such factors along with
richer user profiles has a great potential for providing more
personalised decision support, and greatly improve user expe-
rience when interacting with smart city applications. Although
elicitation and usage of user profiles is optional, motivated by
their potential we included explicit aspects of user profiles in
the decision support process which are automatically encoded
and used to configure the way the decision support process
works. These aspects include not only user location but also
user preferences and constraints on the solutions provided, as
well as dynamic correlations between contextual activities and
their dependencies with city events for a particular user in
specific application scenarios.

The ability to continuously characterize the correlation
between city events and user activities is used to dynamically
filter events that are relevant for a particular user at a specific
time so that Decision Support can be instructed to find new so-
lutions whenever needed. This functionality has been specified
and implemented in a component called Contextual Filtering
[8]. In the proposed characterisation, events, user activities and

User
Application
Reasoning ¢

Request Answers

v

Decisi K g
> Support Knowledge

Fig. 1. Decision Support I/O

External
Information

External
Modules

their dependencies are modelled using Linked Data and open
vocabularies in order to provide a lightweight, interoperable
and well-established foundation for decision support.

In this paper we focus on user-centricity and describe how
user requirements in terms of preferences and constraints can
be explicitly specified and mapped into a representation that
is independent from the specific application.

In the remainder of this paper we will present the design
principles for our Decision Support component in Section II,
formalise our declarative specification of user requirements
and their automatic representation as logical rules in Section
III, and the implementation of our scenarios in Section IV. We
then conclude with some final remarks in Section V.

II. USER-CENTRIC DECISION SUPPORT

The Decision Support component is responsible for higher-
level intelligence, which can utilize user contextual informa-
tion, background knowledge, and real-time events to deduce
intelligent conclusion in real-time. This component is also
capable of acquiring the analyzing additional information
sources related to user contextual patterns, users’ application
usage behaviour, and self-defined preferences (while using
a smart city application) to provide optimal configuration
for smart city applications and enable these applications to
generate reactive application logic within deployed smart
city applications. Figure 1 represents a general information
flow and interactions of Decision Support with other external
components.

As an initial step to start the information processing,
Decision Support receives following input: (i) a reasoning
request from the application interface which includes user
related functional and non-functional parameters, constraints,
and preferences, (ii) background knowledge, which is domain
dependent information available for reasoning and application
logic strictly tied to the given scenario, and (iii) external
information sources, which is any relevant information col-
lected through external components required for that specific
scenario. After processing all related input information as men-
tioned above, Decision Support generates a set of scenario-
driven solutions, which are guaranteed to be optimal and
satisfying all requirement and preferences specified by the
individual user.

In real world scenarios, the reasoning module has to deal
with issues related to incomplete and contradictory informa-
tion, diverse and un-realiable input data, and most importantly
user defined constrained and preferences are not explicitly
input by the end user. In order to better support the provision

of optimal decisions, the reasoning module must have abil-
ity to expressively deduce information from the information
collected through internal and external modules additional to
the user defined input. We achieved this expressivity within
Decision Support by opting to use a declarative non-monotonic
logic reasoning approach based on Answer Set Programming
(ASP) [6]. All input information of Decision Support is
mapped into ASP-format rules. Decision Support combines
mapped rules with already existent domain-dependent rules,
to design an application logic for the provision of optimal
solutions to the users. Figure 2 depicts a system sequence
diagram of Decision Support to showcase all interactions and
processing steps involved in this component. In what follows,
we briefly elaborate each and every information processing
step of the Decision Support component.

e Request Handler receives a ReasoningRequest as an
input from the application containing user preferences
and requirements. Whenever a new reasoning request is
arrived, a new instance of Decision Support is initiated.
This ReasoningRequest is interpreted as the Interprete-
dRequest and used to initiate the DS Manger.

e Request Re-writer automatically generates the logic rules
required for the specific reasoning request that is received
from DS Manager, the detailed process of automated
mapping and rules generated is presented in Section III.
After receiving the rules from Request Rewriter, the DS
Manager asks CoreEngine to perform the reasoning by
sending InterpretedRequest and Rules as parameters.

o CoreEngine is a component that executes the ASP solver
(in our current implementation, we use Clingo4 [3] as
the ASP solver) using the EmbASP framework? which is
able to invoke the ASP solver and to collect Answer Sets
as plain Java objects. The ASP solver starts by collecting:

— Externallnformation refers to additional information
collected through external modules, which can vary
depending on the scenario. For example, in the
Travel Planner scenario (see Section IV), the possible
routes from starting point to ending point or the latest
city events can be considered as Externallnforma-
tion. Decision Support directly interacts with external
modules within the ASP program, using a technique
called the external atoms”. By using this technique,
the ASP reasoner is able to invoke the external
modules interactively, only on need basis and can
also re-use derived answers for other reasoning tasks.
This feature offers a very powerful ability on-demand
composition of reasoning tasks to provide solutions.

— BackgroundKnowledge is static information contain-
ing important facts and rules related to a particular
domain and stored internally for reasoning tasks. For
example, in the Parking Space scenario (see Section
IV), the locations of the parking spaces are part of
background knowledge.

Zhttps://www.mat.unical.it/calimeri/projects/embasp/

‘muﬂ-mnminnmw-rmw-ummmmmmwbgk ﬁ
fivy

Fig. 2. Decision Support sequence diagram

o The ASP Solver combines Externallnformation, Back-
groundKnowedgle, and Rules to compute the optimal
answers (in the form of AnswerSets) satisfying users’
defined constraints and preferences.

e EmbASP Framework processes AnswerSets and the op-
timal selected Answers (as objects) are sent to the
CoreEngine and then back to the user application for
visualization.

The actual deduction process for generating solutions to the
decision support task required by the application is performed
by combining background knowledge, external information,
user preferences & constraints and scenario-dependent rules.
The fully declarative nature of the ASP framework used
in the implementation of the Decision Support component
capabilities makes it possible to combine these rules and
knowledge facts in a straightforward way, and enables full
exploitation of the expressive power of ASP inference for
constraint checking and preference-based deduction. This very
same declarative feature is likely to simplify the extension of
Decision Support provided within the CityPulse framework
and to reuse for other decision support tasks.

III. USER-CENTRIC DECISION SUPPORT REQUEST:
SPECIFICATION AND MAPPING

Preference-driven and constraint-based reasoning provides
a powerful mechanism where user-centricity is a key feature,
and enables to find an optimal match between the needs, pref-
erences of citizens, available data streams and city services.
This section describes the specification of a reasoning request.
We focus on user preferences & constraints and their automatic
mapping into declarative deduction rules. These rules are then
used in the decision support process for solution optimization.

In what follows we will detail each element of the Reason-
ing Request and define the automatic mapping or translation
into deduction rules used by the Decision Support compo-
nent. Such translation is defined in a general way so that
independently of the Functional Details defined as strings and
values, an automatic declarative rule-based specification can
be obtained, which is seamlessly combined with the rules in
the Decision Support module used by a specific application.

As illustrated in Figure 3, the Reasoning Request consists
of:

o Type (1) determines the reasoning task required by the
application. This is used directly by Decision Support
to perform the correct task using the reasoning engine,
and needs to be identified among a set of available
options at design time by the application developer. Such
options have been defined for the implemented scenarios.
Customization and extension of available types will be
possible via APIs.

o User Reference is an identifier of the user that made the
request. Such reference is meant to be a unique identifier
related to user credentials that will be used in the final
integration activities in order to manage user logins and
instances of the CityPulse framework in different cities.

« Functional Details represent the actual criteria for the
reasoning task required by the user (i.e. constraints and
preferences for solution optimization). Functional Details
includes Functional Parameters, Functional Constraints,
and Functional Preferences.

We shall focus now on the specification of each of the
aspects included in Functional Details, and illustrate how they
are automatically mapped and translated into logical deduction
rules.

A. Functional Parameters

A Functional Parameter defines a mandatory information
for the Reasoning Request (for instance the “ending point”
in a travel planner scenario). A set of Functional Parameters
(IT) is composed by a finite set (of cardinality nyy) of indi-
vidual Functional Parameter (7; 7’ € II Vi € [1;np]). Bach
Functional Parameter (7*) is composed of:

o Functional Parameter Name (/N:)

o Functional Parameter Value (V)
ie. = (N, V).

The Functional Parameter Name (/V,;:) is a string taken from
a fixed set of strings (O, N,(i) and the Functional Parameter
Value (V) is specific for each scenario.

The set of Functional Parameters (II) is translated as the
concatenation of the translations of each Functional Parameter
(7%) that composes it. Each Functional Parameter (n° =
(Nyi, Vyi)) is translated as:

parameter(Nyi, V).

The Functional Parameter Value can be a single value or a set
of possible values. When the Functional Parameter Value is
a set (e.g. expressed as enumeration of possible values), it is
translated into several of the above facts, one for each item in
the set.

B. Functional Constraints

A Functional Constraint defines a numerical restriction
about a specific aspect of the Reasoning Request. This restric-
tion is “strict” and needs to be fulfilled by each of the answers
(otherwise referred to as solutions) offered to the user. A set

Reasoning

Request
User Functional
Type Reference Details
Functional Functional Functional
Parameters Constraints Preferences
Functional H Functional g Functional g
Parameter Constraint Preference
T I
Functional Functional Functional Functional Functional Functional Functional Functional
Parameter Parameter Constraint Constraint Constraint Preference Preference Constraint
Name Value Name Operator Value Order Operation Name

Fig. 3. Representation of Reasoning Request

of Functional Constraints (I') is composed by a finite set (of
cardinality nr) of individual Functional Constraint (y*;+* € T
Vi € [1;nr)).

Each Functional Constraint (y%) is composed of:

« Functional Constraint Name (V)

o Functional Constraint Operator (O.:)

« Functional Constraint Value (V)
ie. ’)/Z = <N,Yi,O,Yi, V’Y>

The Functional Constraint Name is a string taken from a
fixed set of strings (O, wa?) and the Functional Constraint
Operator is an arithmetic operator taken from a fixed set
(@O"ﬁ' = {=,#,>,<,>,<}). For each Functional Constraint
Operator (O.,:) we denote with O.: its complementary opera-
tor. The Functional Constraint Value V., is an integer number.

The Functional Constraints (I') is translated as the concate-
nation of the translations of each Functional Constraint (v*)
that composes it. Each Functional Constraint is translated as:

e The “real” constraint:
<« violatedC(N.;i).
o A rule to derive if it is violated:
violatedC(N.,:) + valueO f(N,i, AV), AVO,:V.:).
C. Functional Preferences

A Functional Preference defines a “’soft” constraint or prior-
ity among the verification of specific aspect of the Reasoning
Request. This restriction is “weak” and should be optimized
by the Decision Support component in order to provide the
optimal or most preferred answers to the user.

A set of Functional Preferences (£2) is composed by a finite
set (of cardinality ng) of individual Functional Preference
(W' w? € Q Vi € [1;nq]). Bach Functional Preference (w?)
is composed of:

o Functional Preference Order (O,,:).

o Functional Preference Operation (Opt,,:)

o Functional Constraint Name (N(fyi)) is defined in III-B.

ie. (A)i = <Ow’i’ Optw‘7N(fyl)>

The Functional Preference Order (O,:) is an integer €
[1;nq] and the Functional Preference Operation (Opt,;:) is
an optimization operator taken from a fixed set (Oop , =
{minimize, maximize}). The Functional Constraint Name
(N")) is defined in III-B.

The Functional Preferences ({2) is translated as the concate-
nation of the translations of each Functional Preference (w?)
that composes it. Each Functional Preference is translated as:

#Opt,i {AVQO,i : valueO f(N,i, AV)}.

To allow more flexibility in the logic program each Functional
Preference (w?) could be also translated as (in addition to the
previous translation):

preference(O,i, Opt i, Nyi).

IV. USECASE SCENARIOS

In order to demonstrate how Decision Support can be used
to develop applications for smart cities and citizens, we have
implemented two context-aware usecases using the live data
from the city of Aarhus, Denmark and Brasov: a Travel
Planner app and a Parking app . In this section, we present the
Reasoning Request, logic rules automatically generated from
the Reasoning Request, scenario-dependent rules, and External
Modules used in the decision support process.

A. Travel Planner

Tony needs to travel from home to work. Different means
of transportation are generally available to him and include
walking, biking, car, and public transport. Transportation can
be optimized to Tony’s preferred travel time, convenience,
total cost, environmental impacts, and personal health. Factors
that impact this optimization include the conditions of the
different transportation modes, including but not limited to
road, weather, maintenance works, traffic intensity, people
density, pollution, air quality, irregularities in traffic schedules,
road tolls, seating availability, accidents, availability of city
bikes. Tony will be presented with his ideal route and will be
able to select each leg of the journey based on concurrent and

projected aggregated conditions. Recalculation of his chosen
route(s) can happen if conditions or preferences change, and
the provided solution will adapt to any detour of own choice.

In order to provide optimal travel-planning solutions to
Tony, Decision Support allows him to provide his multi-
dimensional requirements and preferences such as air quality,
traffic conditions, ect. The Reasoning Request for this scenario
has the following main fields:

o Type: indicating what decision support module of the
Smart City Framework is to be used for this application
("TRAVEL-PLANNER?” in this case).

o User Reference: indicating the unique userld.

o Functional Details: specifying possible values of user’s
requirements and preferences. Tables I, II, and III show
concrete possible values of Functional Parameters, Func-
tional Constraints, and Functional Preferences respec-

tively.
TABLE I
EXAMPLE OF FUNCTIONAL PARAMETERS FOR THE TRAVEL PLANNER
SCENARIO
[Functional Parameters | Name [Value Type | Value |
. . . 56.17888121694039
Starting Point STARTING_POINT Coordinate 10.1539936 14949286
Ending Point ENDING_POINT Coordinate 36.15183187883248

10.154508599080145
2017-01-10T18:25:43.511Z
{CAR, WALK, BICYCLE}

STARTING_DATETIME Date
TRANSPORTATION_TYPE Enum

Starting Time/Date
Transportation Type

TABLE II
EXAMPLE OF FUNCTIONAL CONSTRAINTS FOR THE TRAVEL PLANNER
SCENARIO
[Functional Constraints i Name [Operator [Value Type] Value |
Travel time less than X TRAVEL_TIME | LESS_THAN | Duration 15
Distance less than X DISTANCE LESS_THAN Number 1000
Pollution amount less than X POLLUTION LESS_THAN Number 13,5
TABLE III
EXAMPLE OF FUNCTIONAL PREFERENCES FOR THE TRAVEL PLANNER
SCENARIO
| Functional Preferences || Operator | Value |
Travel time MINIMIZE | TRAVEL_TIME
Distance MINIMIZE DISTANCE
Pollution MINIMIZE POLLUTION

The concrete reasoning request is automatically mapped into
ASP rules (see example rules 1-8 in Listing 1) in which:
Functional Parameters are translated as simple logic facts
(rules 1-2); Functional Constraints (rules 3-4) are translated
as strong constraints, which reduce the solution space by
eliminating answers that are violating any of those constraints.
Functional Preferences are translated as optimize statements
(rules 5-8), which rank the solutions to provide only those
that are qualitatively better with respect to the optimization
statements used. Those rules are combined with the specific
scenario-driven rules for the Travel Planner Decision Support
module (rules 9-14) for reasoning®. The Decision support

3A full set of rules is available at https:/github.com/CityPulse/Decision-
Support-and-Contextual-Filtering/tree/master/res/dss

component collects all possible routes from the Geo-spatial
Database Infrastructure (GDI) component [8] as well as the
last snapshot of values of relevant functional properties for
those routes which can be produced dynamically by the Data
Federation component [2], [1], [8] or retrieved from the
Knowledge Base (rules 11-13).

The External Modules used for this scenario are:

e GDI, which enables calculation of different distance
measures and allows enhanced information interpolation
to increase reliability. Furthermore, an enhanced routing
system enables multidimensional weighting on path, e.g.,
depending on distance, duration, pollution, events or
combined metrics. Thereby, it is possible to avoid certain
areas or block partial routes for specific applications.

o Data Federation, which is responsible for processing the
application request for IoT streams and automatically
discover the most relevant data streams after catering for
individual requirements and preferences for a particular
user request. It is also responsible for automatically inte-
grating heterogeneous data streams and perform complex
event processing over the integrated stream.

Both the GDI and the Data Federation components are part of
the CityPulse framework. Their implementation are available
at https://github.com/CityPulse.

parameter ("ENDING_POINT”,”10.1591864 56.1481156").
parameter (”STARTING_POINT” ,”10.116919 56.226144").

:— violatedConstraint ("POLLUTION") .

violatedConstraint ("POLLUTION”) :— valueOf (”POLLUTION",

I

AV), 135 < AV.
~ valueOf ("DISTANCE”, AV). [AV@2]
~ valueOf ("TIME”, AV). [AV@l]

preference (2 ,” MINIMIZE” ,”DISTANCE”) .

preference (1 ,”MINIMIZE” ,”TIME”) .

input_get_routes (SP, EP, V, 5) :— parameter(”

STARTING_POINT”, SP),

10. parameter ("ENDING_POINT”, EP), route_costMode (V).

11. route(@get_routes(SP, EP, V, N)) :— input_get_routes (SP
, EP, V, N).

12. route_data(@get_routes_data(SP, EP, V, N)) :—
input_get_routes (SP, EP, V, N).

13. max_pollution(@get_max_pollution (RouteID))
RoutelD) .

14. 1 <= {selected (RouteID)

O 00~ N W

:— selected (

route ((RouteID, _, _))} <= 1.

Listing 1. A snapshot of logic rules for Travel Planner scenario

B. Parking Space

Frank is having a hard time finding a public parking space.
The city is increasingly reducing the amount of parking spaces
per unit (e.g. apartments), and the difficulty of finding a
parking space means Frank has to drive around for a long time
looking for parking spots. This is very time consuming for him
and results in negative environmental impact (pollution, noise).
By using multiple input sources of information the application
can provide Frank with a certain degree of probability of
finding a parking spot in different locations, thus reducing
the driving time (and related CO2 emissions). By knowing
the number of cars on the road at any time, the application
can help Frank avoiding congested hot spots by being rerouted
towards different paths to even out the distribution.

Decision Support aims to provide optimal available parking
slots nearby Frank’s point of interest while taking into account

his constraints and preferences. The Reasoning Request for
this scenario has the following main fields:

o Type: indicating what decision support module is to be
used for this application ("PARKING-SPACE” in this
case).

o User Reference: indicating the unique userld.

o Functional Details: specifying possible values of user’s
requirements and preferences. Tables IV, V, and VI
show concrete possible values of Functional Parameters,
Functional Constraints, and Functional Preferences re-
spectively.

TABLE IV
EXAMPLE OF FUNCTIONAL PARAMETERS FOR THE PARKING SCENARIO

Name

Functional Parameters H ‘ Value Type ‘ Value ‘
56.17888121694039
10.153993614949286
56.15183187883248
10.154508599080145

2017-01-10T18:25:43.511Z

Starting Point STARTING_POINT Coordinate

Point Of Interest POINT_OF_INTEREST

STARTING_DATETIME Date

Coordinate

Starting Time/Date

Distance Range DISTANCE_RANGE Number 1000
Time Of Stay TIME_OF_STAY Duration 100
TABLE V
EXAMPLE OF FUNCTIONAL CONSTRAINTS FOR THE PARKING SCENARIO
[Functional Constraints I Name [Operator [Value Type] Value |
Cost less than X I COST [LESS_THAN [Number [50 |

Walking distance less than X H DISTANCE ‘ LESS_THAN ‘ Number ‘ 1000 ‘

Similar to the Travel Planner scenario, the concrete rea-
soning request is automatically mapped into ASP rules (see
example rules 1-8 in Listing 2), and combined with the specific
scenario-driven rules for the Parking Decision Support module
(rules 9-13). The Decision Support component collects all
possible parking slots with their cost from the Knowledge Base
(these parking slots are in 'DISTANCE_RANGE’ which is
checked by resorting to the GDI component) as well as the last
snapshot of availability of parking slots which can be produced
dynamically by the Data Federation component (rules 9-11).
Similarly to the Travel Planner scenario, the External Modules
used for this scenario are GDI and Data Federation.

TABLE VI
EXAMPLE OF FUNCTIONAL PREFERENCES FOR THE PARKING SCENARIO

| Functional Preferences || Operator | Value |
Cost MINIMIZE COST
Walking Distance MINIMIZE | DISTANCE

12. 1 <= {selected (ParkingID)
Position , Distance))} <= 1.

13. distance (Distance) :— selected (ParkingID),
parking_space ((ParkingID , Position , Distance)).

parking_space ((ParkingID ,

parameter ("DISTANCE_RANGE” ,1000) .
parameter ("POINT_OF_INTEREST”,”10.116919 56.2261447).
preference (2 ,”MINIMIZE” ,”COST”) .
preference (1 ,”MINIMIZE” ,” DISTANCE”) .
:— violatedConstraint ("COST”) .
violatedConstraint ("COST”) :— valueOf(”COST”, AV),
AV.
~ valueOf (”COST”, AV). [AV@2]
valueOf ("DISTANCE”, AV). [AV@I]
9. parking_space(@get_parking_spaces(POI, DR)) :— parameter
(”POINT_OF_INTEREST”, POI), parameter ("DISTANCE_RANGE” ,
DR) .

QNN BN =

100 <

0

10. availability (@get_availability (ParkingIlD)) :— selected (
ParkingID) .
11. total_cost(@get_total_cost(ParkingID, ToS)) :— selected

(ParkingID), parameter ("TIME_OF_STAY”, ToS).

Listing 2. A snapshot of logic rules for Parking scenario

V. CONCLUSION

In this paper, we describe how we designed and imple-
mented a user-centric Declarative Decision Support compo-
nent by leveraging the expressivity and fully declarative nature
of ASP. To achieve this, we define a representation method that
allows a user to specify constraints and preferences, and we
propose an automatic mapping to convert user requests into
logical rules. In order to demonstrate the efficiency in term of
reusability and declarativity of this approach, we showcase the
implementation of the Decision Support component for two
smart city applications: the Travel Planner and the Parking
applications. Our rule-based Decision Support component can
be used in various application scenarios by: (i) identifying
values of the parameters to be constrained or optimized in the
Reasoning Request, (ii) describing the domain-specific rules
for the decision task (or using existing reasoning modules
available in the CityPulse Framework), (iii) plugging in the
proper External Modules to compute subtasks when needed for
scalability. As a result of our proposal, we can achieve user-
centricity in the Decision Support process in order to provide
optimal solutions that better target user needs.

ACKNOWLEDGMENT

This research has been partially supported by SFI under
grant No. SFI/12/RC/2289 and the EU FP7 CityPulse Project
under grant No.603095. http://www.ict-citypulse.eu.

REFERENCES

[1] F. Gao, M. I. Ali, E. Curry, and A. Mileo. Qos-aware adaptation
for complex event service. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 1597-1604. ACM, 2016.

[2] F. Gao, E. Curry, M. I. Ali, S. Bhiri, and A. Mileo. Qos-aware complex
event service composition and optimization using genetic algorithms. In
International Conference on Service-Oriented Computing, pages 386—
393. Springer, 2014.

[3] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo= asp+
control: Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

[4] R. Giaffreda. icore: a cognitive management framework for the internet
of things. In The Future Internet Assembly, pages 350-352. Springer,
2013.

[5] F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. Sbodio,
and P. Tommasi. Smart traffic analytics in the semantic web with star-
city: Scenarios, system and lessons learned in dublin city. Web Semantics:
Science, Services and Agents on the World Wide Web, 27:26-33, 2014.

[6] V. Lifschitz. What is answer set programming?. In AAAI, volume 8,
pages 1594-1597, 2008.

[7]1 M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris.
Smarter cities and their innovation challenges. Computer, 44(6):32-39,
2011.

[8] D. Puiu, P. Barnaghi, R. Tonjes, D. Kiimper, M. 1. Ali, A. Mileo, J. X.
Parreira, M. Fischer, S. Kolozali, N. Farajidavar, et al. Citypulse: Large
scale data analytics framework for smart cities. IEEE Access, 4:1086—
1108, 2016.

[9] R. Stiihmer, Y. Verginadis, I. Alshabani, T. Morsellino, and A. Aversa.
Play: Semantics-based event marketplace. In Working Conference on
Virtual Enterprises, pages 699-707. Springer, 2013.

