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Abstract—The Internet of Things (IoT) is emerging in the
telecommunication sector, and will bring a very large number
of devices that connect to the Internet in the near future. The
expected growth in such IoT nodes necessitates appropriate
traffic models in order to evaluate their impact on different
aspects of networking, e.g., on signaling load in the networks,
or on processing load of the data in a cloud. In this paper
we analyze the characteristics of aggregated periodic IoT data
based on related work, and compare them with a Poisson
process as approximation for the superposed traffic as assumed
in standardization. Such an approximation is crucial in order
to investigate the scalability of an IoT network, as it may be
impossible in practice to measure or to simulate large-scale
IoT deployments. The accuracy and applicability of the Poisson
process is investigated for the use case “IoT cloud”. The results
show that the Poisson process may induce large errors depending
on the performance metric of interest. This error must be
considered by standardization and requires more sophisticated
traffic models. As key contributions, we provide realistic traffic
models for periodic IoT data, introduce performance metrics for
quantifying the bias, and derive reference values as to when the
Poisson process can be assumed for aggregated periodic IoT data.

I. INTRODUCTION

The Internet of Things (IoT) is a networking challenge

where billions of new devices for countless different purposes

will be interconnected across the digital device mesh (e.g., sen-

sors, appliances, IoT systems). According to BusinessInsider1,

IoT devices may account for 24 billion of the 34 billion devices

that will be connected to the Internet by 2020. IoT refers to

the inter-networking of objects such as physical devices and

items which are embedded with software, sensors, actuators,

and network connectivity that enable these objects to collect

data from multiple modalities (e.g., sight, sound, tactile). The

Internet of Things consists of generic, multipurpose devices

that are usually connected to the Internet in some fashion.

Information to and from the devices is either data that is

1) collected from the devices, aggregated by a gateway (or

aggregator), and processed or stored (a typical client-server

approach), 2) pushed to the devices, e.g., in a multicast ap-

proach, or 3) exchanged between the devices in a peer-to-peer

approach. Machine-to-Machine (M2M) communication, which

can be seen as a subset of IoT, describes a direct interaction

between devices using any form of communications, while

Device-to-Device (D2D) communication encompasses direct

communication between two mobile devices without traversing

1http://www.businessinsider.com/top-internet-of-things-trends-2016-1

a base station or other infrastructure in cellular networks (such

as LTE, 5G). In this paper, we solely focus on the client-server

variant in an “IoT cloud” use case, where the data is collected

from a large number of devices and aggregated in a data center.

To understand the relationship between the system per-

formance and the number of devices, the traffic patterns

generated by IoT devices must be understood and modeled. In

a sensor network, the devices are often sending data packets

in a deterministic, periodic manner. Aggregated traffic from

a large number of devices can be considered as a super-

position (aggregation) of point processes, and by assuming

the point processes to be independent (cf., e.g., [6, 16, 25]),

the aggregated traffic can be modeled as a Poisson process,

which significantly simplifies the modeling of the aggregated

arrival process. However, due to the deterministic periodicity

of the individual device data this will introduce an error term

in the quantification of the models when using a Poisson

process approximation. This has previously been addressed

by [5] and in works on aggregated periodic cell patterns

in ATM networks [30]. In general, [3] discusses how the

superposition of processes can be applied to modeling packets,

flows, and sessions in access and core networks. Yet, current

standardization efforts, e.g. in 3GPP [1], assume a Poisson

process without taking a closer look at the resulting error [17].

The objective of the paper is to quantify the error introduced

by approximating the aggregated periodic traffic process (APP)

by a Poisson process (PP). The paper studies and compares

different characteristics of the processes, including the mean,

variance, coefficient of variation, probability distribution, and

autocorrelation. This knowledge is then applied to the case

study of a IoT aggregation cloud server in order to investigate

the effects on the performance metrics of approximating the

APP by a Poisson process. Based on the analytical and

numerical results, the paper suggests actions on how a Pois-

son process approximation for aggregated IoT traffic can be

chosen.

The remainder of this paper is structured as follows. Sec-

tion II gives some background on IoT. Section III surveys

related work for the traffic characteristics of select IoT appli-

cations. Section IV analyzes the characteristics of aggregated

periodic IoT data and compares them with a PP as approxi-

mation for the superposed traffic. Section V demonstrates the

accuracy and applicability of the PP on the example of the use

case. Finally, Section VI concludes this work.



II. THE IOT ENVIRONMENT

The IoT ecosystem sets itself apart from classical computer

networks in several key areas. Its general focus lies heavily on

the network’s edges, with numerous devices spread over wide

geographical areas. The devices’ tasks often revolve around

data either actuation or data acquisition. Speaking of the latter,

such data is usually then transferred immediately to a more

central processing and aggregation node — in contrast to

traditional Wireless Sensor Networks (WSNs), which usually

operate in a peer-to-peer fashion. This is done in order to

keep the IoT devices cheap and extremely resource-limited,

enabling suggested run-times of ten years on one reasonably

sized battery charge. This also implies a different kind of

information flow: an exchange of data from the edges towards

the center, with traffic biased towards the uplink direction.

Therefore, the general topology is also leaning more towards

stars with interconnected central (or regional) aggregation

nodes.

These devices also do not operate on traditional connectiv-

ity. Instead low power, narrow-banded interfaces are utilized.

This mostly centers around radio communications, which in

turn is subdivided into short range (Wireless Personal Area

Network (WPAN), often from the IEEE 802.15.4 family)

and long range communication (Wide-Area Network (WAN)).

The latter offers a wide range of different protocols, both

standardized and proprietary in nature, either from the cat-

egory of standalone Low-Power Wide-Area Network (LP-

WAN) protocols like LoRa, or using narrow-banded or random

access modes in the existing, traditional mobile networks,

e.g. through NarrowBand IoT (NB-IoT) and other modes

intended to be standardized for 3G and other Third Generation

Partnership Project (3GPP) endeavors. The proprietary LoRa

and LoRaWAN has indeed already garnered significant public

interest through some major provider-backed installations, e.g.

a deployment providing nation-wide coverage in South Korea2,

or community-run, interconnected gateway networks3. Such

gateways aggregate the traffic from devices spread over areas

of up to tens of kilometers in diameter.

Not just the lowest networking layers are different from cur-

rent archetypical networking conditions, but the whole stack

can be different: from the low power IP variant 6LoWPAN

up to domain-specific, resource constrained application-layer

protocols, like Constrained Application Protocol (CoAP) and

Message Queue Telemetry Transport (MQTT). All in all,

this paints a picture of an in all aspects novel networking

ecosystem and traffic patterns, that warrant the creation of

entirely new traffic models, both single source models for

individual IoT device types, but especially also aggregated

models that describe entire sets of communication, i.e. exactly

what passes through one of these IoT aggregation nodes.

A number of publications already overview the many al-

ready existing and proposed applications of IoT, e.g. in indus-

2http://www.sktelecom.com/en/press/press_detail.do?idx=1172
3E.g. https://www.thethingsnetwork.org/community

try automation and supervision [35], cloud-backed at home or

in enterprise-settings [11], smart environment scenarios [4].

III. CHARACTERISTICS OF SELECT IOT APPLICATIONS

IoT traffic can be partitioned by their periodic and event-

based nature as their reason for communication (see also, e.g.,

[17, 24]). Some IoT applications will be always more event-

driven. Consider for example an exemplary smart home that

is outfitted with the latest intrusion alarm devices. These can

consist of simple devices that send an alarm when a window

or door is opened, up to motion-activated cameras that will

then capture and send images to the home owner. These are

triggered by events outside of the domain of influence of these

devices. But even then, often some emergent periodicity ensues

in these triggered events, e.g. the camera is activated each day

when leaving for work and returning, cf. also [26].

On the other hand, IoT devices from other fields of appli-

cation are often much more periodic in nature. A prominent

upcoming example are Smart Grids. This includes not only

the measurement and collection of current power usage values

from residential and industrial Smart Meters, but also includes

the supervision, management, and maintenance of the power

generation and distribution network [15]. Once again, these

usually operate periodic — with different intervals depending

on the type of data — but may switch over to pushing events

in case of critical readings. Such devices are currently often

supported by low-cost GPRS transceivers. Due to the neces-

sary control plane interactions and the limited available radio

resources, GPRS can not support arbitrarily short messaging

periods for a large number of devices without modification.

In a typical scenario the shortest period is estimated to be

5min [23]. Additional work proposes to better utilize the

Random Access Channel (RACH) in current and future mobile

technologies to allow for more devices and be more resource

efficient [18, 34].

Traffic models for modern types of radio and mobile com-

munication devices have been investigated in the literature

in the past — for example in the interaction of application

and signaling traffic as well as the incurred energy usage

[31]. Work on wireless sensor nodes has been conducted

,e.g., in [21] by providing numerical simulation results and

investigating aggregate packet counts in which both periodic

and event-driven communication appears. [2, 14] attempts

to show that in Machine-Type Communications (MTC) the

classic Markovian arrival process assumption does not hold

anymore due to the burstiness of the traffic. Instead, a Beta

distribution should be assumed. On the other hand, the work

conducted in [33] strives to verify that a Poisson process can

indeed be applicable at least to the general (LTE-A) connection

establishment process (without limitation to IoT devices). [32]

explores a large-scale mobile network measurement dataset for

identifiable and well-known M2M device types and evaluates

their traffic characteristics. Of special note are the diurnal

patterns as well as the session Inter Arrival Times (IATs) that

stand apart from typical mobile phone session arrivals. To give

an overall picture of MTC and IoT, Table I depicts a collection



Table I: IoT dimensions and messaging intervals. Values are extracted from the given source, rates are per device.

Type Density Rate/Period Source

IMT-2020 Requirements 106 devices per km2 10 (Mbit/s)/m2 (indoor hotspot) [7]

LTE / smart meter (per PRB) 7.5×104 (urban),
5.6× 104 (suburban)

2017B every 9000 s [28]

Scenario: IoT and smart grids in the city

Water meters 10000 per km2 100B every 43 200 s [19]

Electricity meters 10000 per km2 100B every 86 400 s [19]

Gas meters 10000 per km2 100B every 1800 s [19]

Vending machines 150 per km2 150B every 86 200 s [19]

Bike fleet management 200 per km2 150B every 1800 s [19]

Pay-as-you-drive 2250 per km2 150B every 600 s [19]

3GPP TSG RAN WG2 R2-102340 scenarios

Central London households / smart meters 4968 per cell periods of 300 s, 900 s, 3600 s, 43 200 s, or 86 400 s [2]
Urban London households / smart meters 35670 per cell periods of 300 s, 900 s, 3600 s, 43 200 s, or 86 400 s [2]

of measured, assumed, and modeled traffic characteristics from

various works and standards.

IV. SUPERPOSITION OF PERIODIC IOT DATA

In [1] the 3GPP notes that “[...] for a large amount

of users the overall arrival process can be modelled as a

Poisson arrival process regardless of the individual arrival

process.” The question is, does this statement still hold when

considering the periodic traffic characteristics of IoT? In this

section, we examine the validity of this argument. For this,

Section IV-A uses the well-known Palm-Khintchine theorem

for the superposition of independent renewal processes. We

apply this theorem to the periodic IoT data in Section IV-B

and introduce several performance measures in Section IV-C.

These measures are used to compare the resulting Poisson

process with an APP and are analytically derived in Sec-

tion IV-D for a system of asynchronous IoT nodes with

constant, identical measurement period. In addition, numerical

results are provided and visualized.

A. Definitions and Palm-Khintchine Theorem

The fundamental theorem for the superposition of traffic is

the Palm-Khintchine theorem, which shows that the superpo-

sition of a large number of independent renewal processes will

have Poissonian properties and can therefore be described by

a Poisson process.

Theorem 1 (Palm-Khintchine Theorem). Let {Ni(t), t ≥ 0}
be independent renewal processes for i = 1, 2, . . . , n with iid

interarrival times Ti for each renewal process. The superposi-

tion {N(t) =
∑n

i=1 Ni(t), t ≥ 0} is asymptotically a Poisson

process for n → ∞, if:

1) Overall load is finite, k = n/
∑n

i=1 E[Ti].
2) No single process dominates the superposition process,

E[Ti] ≪ 1/k.

The Palm-Khintchine theorem is based on the assumption

that there are a very large number of independent stochastic

processes at microlevel, where no single process dominates the

aggregated process, i.e., where each individual process rela-

tively rarely generates events when compared to the frequency

of events in the aggregated process. Then the superposition of

all these processes behaves approximately as a Poisson process

on the aggregation level. Therefore, in practice Poisson pro-

cesses can be observed in cases where the process constitutes

of a large number of independent processes.

B. Poisson Approximation for Periodic IoT Data

The Palm-Khintchine theorem suggests that the aggregated

periodic IoT traffic from several sources can be approximated

by a Poisson process. In this context, we define the aggre-

gated periodic traffic process (APP) as a superposition of n
independent arrival processes.

Definition 1 (Periodic IoT Traffic). A single node i is a traffic

source which periodically generates a message every time ti =
kTi (k ∈ N). The message period is constant and equal to Ti.

The traffic from these sources can then be aggregated in

three different fashions:

1) Synchronous sources, ti = t, ∀i
2) Asynchronous sources with the same sampling period,

ti 6= tj and Ti = T
3) Asynchronous sources with different sampling periods,

ti 6= tj and Ti 6= Tj

Synchronous sources can be modeled through periodic batch

arrivals with size n. There is no superposition of traffic and

no superimposed Poisson process follows and instead can

thus be directly analyzed. In many scenarios with periodic

IoT traffic — especially with a large number of nodes n
— it is much more likely to assume asynchronicity in their

periods (synchronicity can pose significant load problems in

the aggregated core, and is not easy to achieve across a large

number of distributed devices). In this paper we focus solely

on asynchronous sources with the same sampling period, with

different sampling periods to be investigated at a later point

in time.

Definition 2 (Asynchronous Homogeneous Periodic Traffic).

The system consists of n nodes with the same message

sampling period T . In asynchronous mode, the nodes start

randomly at time ti ∼ U(0, T ). Each node i periodically
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Figure 1: Asynchronous periodic system with n nodes and

identical period T is depicted. The interarrival times Ai

between the i-th and the (i + 1)-th (i = 1, · · · , n) message

are identical in each period and ti + kT for k ∈ N0.

generates messages at time ti + k · T for k = 0, 1, 2, . . . . The

interarrival time between the messages of node i and node

i + 1 is denoted Ai = ti+1 − ti (i = 1, · · · , n − 1), with

t0 = 0, and An = T + t1 − tn (which is the interarrival time

between the first message in a window and the last message

in the previous window).

An example of such a sequence of messages ti with con-

stant period T and the corresponding interarrival times Ai is

illustrated in Figure 1. In this paper we focus on homogeneous

nodes (with equal Ti = T ), and in stationary state where each

node is sending once (and only once) in the interval [t0; t0+T ].

C. Performance Metrics

The Palm-Khintchine theorem holds when n is large, and

with independent and identically distributed (iid) interarrival

times for each node. This raises two questions: When is n large

enough so that the Poisson process is a proper assumption?

How much of an error is introduced by this assumption

and which traffic characteristics are affected? The Poisson

approximation is described by the interarrival time distribution

A∗ ∼ Exp(n/T ) which is compared to the Ai of the APP. To

this end, we introduce several metrics and their ideal outcomes

to quantify the error between APP and Poisson process.

(1) Rate of APP (n/T ) and Poisson process (λ∗) are identical.

λ∗ = n/T (1)

(2) Relative error between average expected interarrival times

Ā (APP) and Poisson process should approach zero.

rA =

∣

∣

∣

∣

1− Ā

E[A∗]

∣

∣

∣

∣

< ǫ with Ā =
1

n

n
∑

i=1

E[Ai] (2)

(3) Average expected shift S̄ between arrival times of APP

and Poisson process should approach zero.

S̄ =
1

n

n
∑

i=1

|τ∗i − τi| =
T

2n
< ǫ (3)

(4) Relative error between the average coefficient of variation

C̄ of interarrival times of APP and Poisson process (cA∗ =
1) should approach zero

rC =
∣

∣1− C̄
∣

∣ < ǫ with C̄ =
1

n

n
∑

i=1

Std[Ai]

E[Ai]
(4)

(5) Number of arrivals N∗ within T of Poisson process, N∗ ∼
Poiss(λ∗T ), should be close to n. Thus, the coefficient of

variation cN should approach zero.

cN∗ =
Std[N∗]

E[N∗]
=

1√
λ∗T

=
1√
n
< ǫ (5)

These metrics are further defined and discussed in the follow-

ing section.

D. Asynchronous IoT Data with Same Period

We consider a fixed frequency 1/T of measurement data

for each of the IoT nodes. We assume that the IoT nodes are

not synchronized and start randomly at ti ∼ U(0, T ) as given

in Def. 2.

1) Expected Time between Arrivals: The expected interar-

rival time E[Ai] between two consecutive IoT messages is

E[Ai] =
T

n+ 1
(6)

for i = 0, . . . , n−1. Note that E[Tn] = T −tn is also E[Tn] =
T

n+1 , and hence

E[An] = E[Tn] + E[A0] = 2
T

n+ 1
. (7)

A proof is sketched in the following. Let X be a random

variable (RV) uniformly distributed over (0;T ), i.e. X ∼
U(0, T ). The probability density function is f(x) = 1/T
if x ∈ (0;T ), otherwise f(x) = 0. Then, let X1 and X2

be two RVs following X . The distance between the two

random points X1, X2 in the interval (0, T ) is then also a

RV, Y = |X1 −X2|. The joint probability P (X1 = x1, X2 =
x2) = P (X1 = x1)P (X2 = x2) =

1
T 2 since X1 and X2 are

independent.

E[Y ] =

∫ T

0

∫ T

0

|x1 − x2|
1

T 2
dx1dx2 =

T

3
(8)

Accordingly, we can derive this for larger values of n > 2
resulting in Eq. (6). A formal proof is given in [20].

2) Relative Error of Expected Interarrival Time: As ex-

plained in the previous section, the expected interarrival of

the APP is E[Ai] = T/(n + 1) for i = 1, · · · , n − 1 and

E[An] = 2T/(n + 1). The expected interarrival time over

(0;T ) is then

Ā =
1

n

n
∑

i=1

E[Ai] =
1

n

(

(n− 1)T

n+ 1
+

2T

n+ 1

)

=
T

n
(9)

The expected interarrival time of the Poisson process is

E[A∗] = T/n. Hence, the relative error between the expected

interarrival times in the APP and Poisson process is zero.

3) Expected Traffic Shift: When considering the interarrival

times, using Poisson process as an approximation of the APP

will introduce a bias τi between the arrivals, see Figure 2. The

expected shift (bias) τi of the i-th arrival is as follows.

τi = t∗i − ti = i ·
(

T

n
− T

n+ 1

)

(10)
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Figure 2: Expected interarrivals ti, i = 1, . . . , n of the aggre-

gated periodic process (blue �) and expected interarrivals t∗i
of a Poisson process (red x) with λ = n/T in [0;T ].

The expected shift over (0;T ) is then

E[S] =
n
∑

i=1

τi =
T

2
. (11)

and the expected shift per node in (0;T ) is E[S]/n = T
2n .

For n > T
2ǫ , the average shift becomes negligibly small. For

example, with n > 50 nodes, the error is smaller than ǫ = 1%
for T = 1.

4) Variance of Periodic Traffic: The first n−1 phases follow

a Beta distribution X ∼ Beta(1, n, 0, T ). Let us consider the

first order statistic X of the uniform distribution. The ti are

iid and uniformly distributed in (0;T ), i.e. ti ∼ U(0, T ) with

PDF f(t) = 1/T and CDF F (t) = t/T for 0 ≤ t ≤ T .

Let X = min{ti} be a RV that describes the minimum of

the ti. Then, the CDF of X follows a Beta distribution.

X(t) = P (X ≤ t) = 1− P (X > t)

= 1− P (t1 > t, . . . , tn > t) = 1−
n
∏

i=1

P (ti > t)

= 1− (1− F (t))n = 1− (1− t/T )n (12)

for which the mean and the coefficient of variation are

E[X] =
T

n+ 1
, cX =

√
n√

n+ 2
. (13)

For the last phase, it is An = X + X . However, the

intervals Ai are not independently distributed. The reason

is that
∑n

i=1 Ai = T . Therefore, we numerically derive

the average coefficient of variation over all n nodes, i.e.

C̄ = 1
n

∑

=n
i=1 ci, which is fitted in Figure 3 leading to

C̄ =
n− 1

n
= 1− 1

n
and rC =

∣

∣1− C̄
∣

∣ < ǫ . (14)

Thus, for n > 1/ǫ, the relative error of the coefficient of

variation is smaller than ǫ, e.g. for ǫ = 1% this holds for

n > 100.

5) Deviation from expected number of arrivals n in (0;T ):
The APP generates a fixed number of n arrivals in (0;T ),
while for the Poisson process the expected number of arrivals

in (0;T ) is λ∗T = n.

The Poisson distribution yields the probability that exactly

n arrivals will occur in (0;T ).

PT (n) =
nn

n!
e−n (15)
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Figure 3: The average coefficient of variation c̄i of the in-

terarrival times Ai in an asynchronous mode with n nodes

converges towards 1.0 for an increasing n, C̄ = 1− 1/n.

However, this probability is decreasing with increasing n and

even PT (1) = 0.3679 ≪ 1. When considering the coefficient

of variation of the Poisson process, it is

cN∗ =
1√
n
< ǫ (16)

which should be close to zero. For n > ǫ−2, the error is

smaller than ǫ.

V. USE CASE: LOAD BALANCER AT IOT CLOUD

To numerically compare the APP with the related Poisson

process, we take an IoT cloud as a concrete example. Here,

data arrives from sensor nodes and is aggregated at a load

balancing gateway which forwards the data to the backend

cloud servers. The crucial performance measure for dimen-

sioning the load balancer is the waiting time. The system is

modeled as an nD/D/1 queue (denoted in Kendall notation)

and analyzed in [22, 30]. We further investigate the impact

of additional network transmission delays, which leads to an

nG/D/1 system by means of simulations. The use case shows

the limits of the Poisson process approximation.

A. Scenario

We consider a scenario where n nodes are periodically

sending messages which arrive at an IoT cloud to be processed.

The messages arrive at a load balancer, i.e. the first point

of the cloud architecture where the individual traffic flows

become aggregated. Due to the large number of IoT devices,

such a load balancer is required to distribute the workload

across backend servers [12]. The nodes are asynchronous, but

have the same sending period T . The processing time S to

handle the (typically small) IoT message at the load balancer

is constant, see Table I. This system is denoted as nD/D/1
waiting system. We consider S = 1 time units and express

time related measures (like waiting times) relative to S. The

system is illustrated in Figure 4.
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B. M/D/1 System State Distribution

An approximation of the system is an M/D/1 system in

which the arrivals are approximated with a Poisson process

with rate λ = n/T . Iversen and Staalhagen provide an

efficient calculation of the M/D/1 system state probabilities

[13], i.e. the number of customers i in the system. The state

probabilities P (i) are recursively computed based on Fry’s

equation [10]. The load in the system is ρ = λS with constant

service time S.

P (0) = (1− ρ) (17)

P (1) = (1− ρ)(eρ − 1) (18)

P (i+ 1) =
1

P (0, ρ)

(

P (i)− (P (0) + P (1)) · P (i, ρ)

−
i
∑

n=2

P (n) · P (i− n+ 1, ρ)

)

(19)

Thereby, we define P (i, ρ) as follows.

P (i, ρ) =
ρi

i!
e−ρ (20)

C. nD/D/1 System

Roberts and Virtamo analyze the state probability for the

nD/D/1 queue in [30] based on [9].4 They compare the

system to M/D/1 and find that the Poisson approximation

can lead to a significant overestimation of buffer requirements,

particularly in case of heavy load. For 0 ≤ r < n, we have

the following complementary cumulative distribution of the

number X of customers, while P (X > 0) = 0 for r ≥ n.

P (X > r) =

n−r
∑

s=1

(

n

r + s

)

( s

S

)r+s

(21)

(

1− s

S

)n−r−s S − n+ r

S − s

Good approximation formulae for the waiting time under

high load readily exist, as is summarized by Menth and

Muehleck in [22].

P (W > t) ≈ exp

(−2t

S

(

t

(n− 1)S
+ 1− nS

ρ

))

(22)

Figure 5 compares the CCDF of the system state X for

nD/D/1 and M/D/1 for high load (ρ = 0.95). It can

be seen that with a higher number of nodes, the nD/D/1

4The report in [29] also provides a comprehensive summary of cost models
for periodic traffic.
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Figure 5: CCDF of the system state M/D/1 and nD/D/1
under heavy load (ρ = 0.95).

curve approaches the M/D/1 curve. Nevertheless, there is a

significant gap and the Poisson approximation overestimates

the buffer requirements when dimensioning the load balancer

according to a certain threshold P (X > x). However, for

fairly low load (ρ = 0.55), the difference between nD/D/1
and M/D/1 is negligible, as we argue in the next section.

D. Mean waiting time and relative error

For M/D/1, the expected number of customers X is well

known and follows from Eq. (19).

E[X] = ρ+
ρ2

2(1− ρ)
(23)

With Little’s Law, the expected waiting time follows ac-

cordingly from E[X] = (E[W ] + S)λ.

E
[

WM/D/1

]

=
S · ρ

2(1− ρ)
(24)

For nD/D/1, the expected waiting time is derived from a

result from Eckberg [8].

E
[

WnD/D/1

]

=
n− 1

2T ·B(n− 2, T )
(25)

For the computation of the Erlang-B formula (B,M, a), the

iterative method is used.

B(0, a) = 1,
1

B(n, a)
= 1 +

n

a ·B(n− 1, a)
(26)

Figure 6 shows the mean waiting times in relation to the

service time S on the y-axis, while the system load is depicted

on the x-axis. For heavy load, there are significant differences.

The higher the number of nodes the closer the nD/D/1
system approaches M/D/1. For high load ρ = 0.95, the

relative error

rW (ρ) =

∣

∣

∣

∣

∣

1− E
[

WnD/D/1

]

E
[

WM/D/1

]

∣

∣

∣

∣

∣

(27)
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Figure 6: Mean waiting times (normalized by service time S)

for nD/D/1 and M/D/1 reveal significant differences for

high load, e.g. ρ = 0.95. The higher the number of nodes is,

the smaller the difference becomes.

of the expected waiting time is smaller than epsilon for

n > 38,900. An intuitive explanation of the differences

between the mean waiting times of M/D/1 and nD/D/1
is the boundedness of individual waiting times. In nD/D/1,

the individual waiting time is bounded by S(n − 1), which

happens if all n arrivals occur simultaneously. Ramamurthy

and Sengupta explain it with the busy period [27]: “In the

M/D/1 queue both the waiting time and the busy period is

unbounded as the utilization gets close to one [i.e. heavy load].

On the other hand, in our [nD/D/1] model the busy period

(and consequently the waiting time) is always upper bounded

by one. For this reason, it is not surprising that the M/D/1
results overestimate those of our [nD/D/1] model.”

E. Impact of Network Transmission (nGI/D/1)

The nD/D/1 model of the IoT load balancer is refined in

this section, as we additionally take into account shifts in the

arrival pattern, since the sources have to transmit the data to

the IoT load balancer. The network transmission delay is a

random variable δ and we assume an exponential distribution,

δ ∼ Exp(µ) with mean delay δm = 1/µ. Thus, any packet

sent at time t arrives at the load balancer at time t+ δ. As a

consequence, the interarrival times I per node do not follow

a deterministic distribution, but it is the convolution of the

network transmission delay, I = (i + 1)T + δ − (iT + δ) =
T + δ− δ, for which the following CDF can be derived easily.

F (t) =

{

1
2e

µ(t−T ) , t ≤ T

1− 1
2e

−µ(t−T ) , t > T
(28)

The interarrival times between consecutive messages from two

nodes is more complex. In particular, messages can overtake

other messages and reordering may occur.

Figure 7 presents some simulation results of the mean

waiting time for varying network delays and number of nodes.
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Figure 7: Impact of additional network delay on the mean

waiting time for high and medium load.

Table II: Guidelines for the minimum number n of nodes such

that the relative error due to Poisson approximation is below

a threshold ǫ. We consider T = 1, such that n depicts the

number of messages per seconds λ = n/T . ’CoV’ abbreviates

the coefficient of variation of a random variable.

Measure Description Formula ǫ = 0.1

Bias of Poisson process to approximate APP arrival pattern

rA mean interarrival time (IAT) rA = 0 any n > 0
S̄ avg. shift of IAT n > T/2ǫ n/T > 50
rc CoV of IAT Eq. (14) n > 1/ǫ n > 100
cN∗ CoV number arrivals in T n > 1/ǫ2 n > 10000

Example: Waiting times at IoT load balancer

rW (ρ) rel. error waiting time numerically depends on ρ
for ρ = 0.95 n > 38,899
for ρ = 0.55 n > 486
for ρ = 0.15 n > 110

The load in the system is fixed to high load (ρ = 0.95) or

medium load (ρ = 0.55). It can be seen that the additional

network delay does not have an impact when n is large. But

the mean waiting time still depends on the number n of nodes,

see also Figure 6. Therefore, the minimal number of nodes n
to keep the error below a threshold is similar. Only — in the

(unrealistic) case that the additional network delay δ is much

larger than the period T — then the aggregated process leads

to a Poisson process, as the sending period T has no significant

influence anymore.

In summary, network transmission delays do not signifi-

cantly influence the waiting times of an IoT load balancer for

realistic periodic IoT data. The results imply that an imple-

mentation of the IoT stack is not necessary for dimensioning

the IoT load balancer. Rather when n is not large, it is more

crucial to consider nD/D/1 instead of the Poisson process.

VI. CONCLUSION

IoT traffic characteristics often revolve around periodic

communication from asynchronous homogeneous sources with

a constant sampling period. For the analysis of such IoT traffic,



the superposition of the traffic streams from n such nodes

can be approximated by a Poisson process which allows to

easily derive results for large-scale IoT systems. However,

due to the Poisson approximation, an error is introduced when

comparing different characteristics of the Poisson process and

the aggregated periodic process. This error is often neglected

in literature and standardization, although this may lead e.g.

to overdimensioning as in the case of the IoT load balancer.

We introduced several performance metrics and derived this

bias analytically and numerically. The results and concrete

minimal values for the number of nodes n to keep the relative

error below a certain threshold (e.g. 1%) are summarized in

Table II. Depending on the concrete use case or characteristic

under consideration, the minimal value of n varies signifi-

cantly. For characteristics like autocorrelation of waiting times,

the Poisson process is not able to capture the characteristics of

the APP. However, if those characteristics are not relevant (e.g.

to dimension the buffer of an IoT gateway and load balancer),

then the Poisson process is a good approximation. Especially,

in many realistic traffic models (see Table I) the number

of nodes is large enough, such that the bias remains small.

Nevertheless, when looking at waiting times of the aggregated

traffic, e.g. at an IoT load balancer, in high load scenarios, a

very large number of nodes is required to keep the bias low.

Future work will additionally take into account heterogeneous

nodes with random periods (i.e. traffic from asynchronous

source with different sampling periods as defined in Sec. IV-B)

as well as the superposition in hierarchical IoT networks.
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