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Abstract

We present Soteria, a data processing pipeline for detecting multi-institution attacks.
Multi-institution attacks contact large number of potential targets looking for vulnerabil-
ities that span multiple institutions. Soteria uses a set of Machine Learning techniques
to detect future attacks, predict their future targets, and ranks attacks based on their
predicted severity. Our evaluation with real data from Canada wide institutions networks
shows that Soteria can predict future attacks with 95% recall rate, predict the next targets
of an attack with 97% recall rate, and can detect attacks in the first 20% of their life span.
Soteria is deployed in production at CANARIE Canada wide network that connects tens
of Canadian academic institutions.
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Chapter 1

Introduction

Multi-institution attacks initiates connection with a large number of potential targets look-
ing for vulnerabilities that span multiple institutions.Multi-institution attacks cause sig-
nificant financial loses and information leaks. For instance, the loss caused by NotPetya
attack exceeds $10 billion [28], and the WannaCry ransomware attack affected more than
200,000 computers in 150 countries|7] causing millions in damages. In the rest of this paper
we use “attack” to mean a multi-institution attack. In figure 1.1, this external adversary
is searching for a vulnerability in multiple internal nodes existing in multiple institution
networks. They are looking for a vulnerability to exploit. Defending multiple institutions
is similar to defending one large network with the exception that in a single institution
there is a cohesive security team working together. Nonetheless securing large networks is
challenging for the following reasons. First, they contain lots of nodes and thus a larger
set of possible vulnerabilities. Second, vulnerabilities an attacker can exploit continuously
change (i.e. software changes and new devices connecting) making it harder to keep track
given the first point. Worst yet, it may take months until vulnerabilities are patched.
For instance, the WannaCry ransomware attack targeted a vulnerability in old Windows
versions, for which a patch had been released more than two months before the attack
[7]. Third, the attacks often happen in a short period of time. For instance, our data set
(Section 4) shows that attacks can initiate millions of connections in 24 hours. This short
duration leaves little time for the cybersecurity personnel to detect, analyse, and deploy a
defence mechanism. Fourth, due to the large network footprint , there are many attacks
happening at the same time. As the current process for analysing the attacks involves
cybersecurity personnel, the number of attacks that can be inspected in time is limited.
Inspection of attacks involves going through the connection logs and if an attack cant be
confirmed more detailed network logs will be inspected as well (ex. specialized logs such
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Figure 1.1: Multi-institution Attack Model.

as http logs). Finally, if they are still unable to confirm the attack they must inspect the
affected machine. This prolongs the attack detection time and increases the time window
in which an attack can cause damage.

In a multi-institution setting there are multiple security teams, which, if any, share
intelligence in a very slow manner.

For academic institutions, defending against multi-institution attacks is harder because
they operate large and constantly changing networks (i.e. research projects or students
spawning new nodes and services), and they have smaller budgets and cybersecurity teams.
This makes academic institutions a prime target for attacks. For instance, in Canada,
cybercrime caused an average of $9.25 million in losses per academic institution in 2019
[0] and 46% of the Canadian institutions reported a cybersecurity incident in 2017, which
was the second highest sector in Canada [9].

The current defence technique against these attacks is inadequate. The main approach
relies on sharing intelligence between cooperating institutions and using public databases
that list recent attacks. This approach is slow to detect an attack and the information
shared is often limited due to regulatory and privacy policies.

We present Soteria, a novel data processing pipeline for detecting multi-institution at-



tacks. Soteria overcomes the shortcomings of the current defence approach. Soteria collects
minimum information from cooperating institutions, mainly information about IPs estab-
lishing connections to an institution. It then uses a novel combination of machine learning
(ML) techniques to detect current attacks targeting multiple institutions, or predict future
attacks. Soteria also predicts the next targets of an attack and identifies the larger scale
attacks(i.e. severe). These findings help focus each institution’s limited resources on the
most severe attacks that are targeting them now or in the near future.

Soteria is carefully designed to be able to scale to hundreds of institutions and be
able to detect attacks in a timely manner. Soteria uses graph analysis to extract features
and linear regression to detect future attacks. Linear Regression is an efficient time series
analysis that is able to capture the future trends of the connection graph over time and
identify future multi-institutional attackers (MIAs). We use a bidirectional long short-
term memory recurrent neural network with attention mechanism (ABiLSTM) to predict
the future targets of an attack. Finally, to predict the severity of the attack we captured
static and dynamic features of the generated graphs and use normalization and reduction
techniques to compute a severity indicator.

Through our study of the dataset collected from participating institutions we learnt a
number of insights. We found that to accurately predict the next target of an attack, the
used mechanism should capture: 1) The relationships between institutions, as institutions
with similar characteristics are usually targeted together (i.e., institution size, services
offered, and security posture), 2) the sequence of the attack, and 3) the level of activity of
an attacker. One would expect that ML techniques that predict events occurring together,
such as a co-occurrence matrix, to be effective in detecting MIAs. Surprisingly, based on
our experiments, these techniques are not effective; this is because a co-occurrence matrix
[13] does not capture the sequence or the level of activity of an attack. Techniques, such
as a unidirectional LSTM which predict a sequence of events performed better, but did
not achieve high accuracy in predicting the next target because attacks do not follow the
same sequence in every attack.

It was surprising that a simple linear regression model over the right set of features is
highly effective in detecting an attack and that nodes that contact more than one institution
are, with high probability, initiating an attack. Furthermore, surprisingly, using a short
history of the recent connections detected the attacks faster than when using all the data
collected in the last 24 hours.

Soteria has been deployed in production for the last year as part of the Canadian
Network for the Advancement of Research, Industry and Education (CANARIE) intru-
sion detection system (IDS) program. CANARIE [2] is a Canada wide backbone network



connecting academic institutions. The CANARIE IDS is serving over 100 institutions
in Canada. Over the last year, Soteria has identified numerous severe multi-institution
attacks.

Our evaluation with real data from the CANARIE network shows that external IPs
communicating with more than two institution are 95% likely to be a multi-institution
attacker. Our evaluation also shows that Soteria detects future attacks with up to 95%
recall rate and within the first 20% of the attack’s lifetime. Finally, Soteria detects and
notifies 97% of institutions that will be targeted in the future before the attacker initiates
a connection to that institution.

The rest of this thesis is organized as follows. In Section 2 we survey related work.
In Section 3 we detail the design of Soteria. In Section 4 we evaluate the accuracy or
predicting a future attack and the future targets of an attack. We present our concluding
remarks in Section 5.



Chapter 2

Related Work

While we did not find previous work that builds a technique to detect multi-institution
attacks, our work is related to efforts in detecting large-scale attacks and multi-institution
intelligence sharing.

Reconnaissance Detection. Reconnaissance attacks try to scan systems looking for
vulnerabilities. Previous efforts on reconnaissance detection are limited to detecting port
scans. For instance, Udhayan et al. [35] detect port scanning attempts by applying a set
of heuristics on the connection timing and TCP header fields. Allen et al. [¢] note that
port scanning tools leave detectable features in the generated requests. For instance, they
may contain invalid data or header information. Given the short list of scanning tools,
they explore inspecting packets for special markers to identify port scanning attempts.

Heavy Hitters Detection. Previous efforts attempted to detect large scale attacks known
as heavy-hitter attacks. Heavy-hitters communicate with an unusually large number of
hosts. There are two kinds of heavy hitters by the number of the connections per host:
High volume attacks (HVA) which create a large number of connections per host, i.e.,
variants of DoS/DDoS attacks, and Low volume attacks (LVA) that do not have a high
volume of connections per host such data-theft attacks or scanning attacks. In either case,
heavy hitter attacks connect to a large number of hosts. The main challenge for detecting
heavy hitters is handling large amounts of data. Previous efforts [10, 21] resorted to filtering
out low cardinality hosts and sampling. Yang et al. [26] summarize traffic measurements
by using mergeable data structures and aggregating the summaries at the operator center.
The merged summary is used to detect heavy hitters.

Zero-day Attack Detection Zero-day attacks (ZA) refer to never-seen-before cyber at-
tacks. that security systems have no awareness of existing. The current approach [21, 6, 12]
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for detecting these attacks requires consistently analyzing incoming traffic using a plethora
of models and artificial intelligence techniques that are designed to detect any anomalies
or suspicious activity not present in any up-to-date attack-signature databases.

Kumar et al[24] proposes a framework to detect unknown cyber-attacks by introducing
a robust intelligent, novel approach following a multi-phase approach to distinguish attacks
of both high volumes (HVA), e.g. DoS and DDos, and low volumes (LVA), e.g. OS finger-
printing. Their work addresses the challenges of detecting zero-day attacks by analyzing
two separate pools of safe and non-safe network traffic flows to extract the features of said
flows and classify them to either be HVA or LVA signatures. Relying on the assumption
that ZAs inherently show the same well known properties and behavior of previously de-
tected attacks, their work can detect HVAs by using on frequency estimation algorithms,
on top of detecting LVAs by the utilization of graph analysis.

Also building upon the classical heavy-hitter detection algorithm, Afek et al[6] devel-
oped their Double Heavy Hitters (DHH) algorithm to identify frequent substrings of varying
lengths in a stream of packets. One of the main focuses of their work is running the al-
gorithm in linear time as well as extending it to identify groups of of signatures, utilizing
k-grams (strings of chars of length exactly k), that can frequently be found in the same
packets.

Behavior analysis is another way of tackling the detection of Zero-day attacks. These
systems are trained to detect anomalies in the network traffic and judge the nature of
such anomalies. Duessel et al. [12] utilized payload-based anomaly analysis to detect
suspicious behavior in the application layer of systems. Their models trains by processing
the protocol features of benign traffic to build a global normality model that is compared
to when deciding if a message is malicious based on its distance from the norm.

Anomaly Detection. There have been many works that utilize anomaly detection to
detect threat actors. The main premise of using anomaly detection to find threats is that
threat actors behave differently than the general population of actors. In anomaly detection
there are works that attempt to identify anomalous behaviour to capture a broad range of

threats, work by Reuter et al. [31] is amongst the more recent works that performs such a
detection. The other type of anomaly detection works target only a certain type of attacks,
for example, Daneshgadeh et al. [I11] created a model to differentiate DDos attack from

Flash Events.

Current Approach for Detecting Multi-Institutional Attacks. The main approach
for handling multi-institution attacks currently is through sharing attack intelligence [14].
Cyber threat intelligence takes on many forms [11].



Strategic threat intelligence: The big picture of past, current and future trends in
the threat landscape

Tactical threat intelligence: Techniques, tools, and tactics of the threat actors

Operational threat intelligence: Specifics about the nature and purpose of threats
and actors

Technical threat intelligence: Technical indicators about the campaigns.

The technical threat intelligence category is of concern to us as our goal is to provide
live threat details.

Shared intelligence can either come from peer institutions that cooperate on detecting
attacks or from public databases. A number of databases offer information about known
attacks and provide a list of malicious IPs such as AbuseIPDB [20] and VirusTotal [1].
Databases, such as CVE [27] and CWE [1], offer information about vulnerabilities in
software.

Databases that provide lists of malicious IPs and domains are manyfold. Some are
community shared information such as AbuseIPDB[20]. AbuseIPDB is a cybersecurity
intelligence aggregation site that collects threat information from none vetted source (re-
liability of their information is not confirmed). Others provide vetted and reliable infor-
mation such as SolarWinds [3]. There are also sources that aggregate information from
multiple databases, such as Virus Total [1].

Databases that list Vulnerabilities discovered and the effected software versions are
databases and sites that list known network software vulnerabilities, provide descriptions,
and possible steps for remediation. For example CVE [27] is a program to identify, define,
and catalog publicly disclosed cybersecurity vulnerabilities. There are also DBs and sites
such as the Common Weakness Enumeration (CWE) [1] which is a community-developed
list of software and hardware weakness types.

Threat Intelligence sharing can be utilized in three ways:

e Manually: Cybersecurity specialists will receive alerts in an email or any other form
of messaging. Then they will decide to react to this information based on their
knowledge of their network.

e Automated: In a completely automated fashion, Security information and event
management (SIEM) Intrusion detection system(IDS), Intrusion Prevention system
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(IPS), or automated Firewalls, will receive threat feeds from reliable source and will

immediately act on that information without user input. For example malicious IPs
will be blocked.

e Hybrid: Threat feeds will be fed to a SIEM, IDS, IPS, and other customized systems.
These systems will use the fed data to search, correlate, and analyse, to provide alert-
ing, visualization and threat hunting capabilities, but action will be the cybersecurity
officers responsibility.

Unfortunately, while helpful, these approaches do not adequately protect against multi-
institution attacks. That is because the cycle starting from detection to information sharing
are often slow in reacting to active attacks. Their networks are large, continuously chang-
ing, and there are a large number of attack attempts which overwhelms institution staff.
They are also hesitant to share information[l1] because:

e Privacy and liability concerns: Needing to share information that could be private.

e “Nothing valuable to contribute”: organizations are missing a lot of the threats that
might be not important to them but is important to others.

e “Too much noise”: There is so much malicious activities happening and its not easy
to report them all

e “Has been hacked”: The fear of sharing breach details more broadly than necessary.

Soteria aims to overcome the shortcomings of the previous techniques. It relies on min-
imal information shared by institutions to automatically detect multi-institution attacks.
It also prioritizes information provided to security officers, by identifying the most severe
attacks. Further, it identifies the next potential targets for the attack. This information is
used to notify the targeted institution before the attack reaches that institution. Finally,
Soteria is privacy conscious, and does not share institution-specific information.



Chapter 3

System Design

Soteria data processing pipeline is organized into five stages: (i) feature extraction, (ii)
attack detection, (iii) severity estimation, (iv) next target detection, and (v) report gener-
ation. Figure 3.1 shows the Soteria system architecture.

Institutions periodically submit logs of the recent communication activities on their
networks. The feature extraction step (cf. Figure 3.1) analyzes the data to extract a
vector of features. The extracted features are leveraged by the attack detection step that
uses a ML model to predict potential attacks. The ML model also outputs additional
metrics to help with the next two steps.

The severity estimation step uses the metrics calculated in the previous steps to estimate
the severity of the predicted attacks. This step helps identify severe attacks. The next
target prediction step uses deep learning to identify the next targets of the predicted
attacks. Finally, Soteria combines the results of the attack detection, severity estimation,
and next target prediction steps into user reports. The rest of this chapter details the
design of each step.

3.1 Institution Shared Data

Sharing connection and infrastructure information between institutions is complicated due
to regulatory and privacy-related restrictions. This is the case for the institutions con-
nected to CANARIE [2]. The institutions periodically share connections logs collected by
ZEEK [30], a network security monitoring tool. In addition to ZEEK connection logs, each
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Figure 3.1: Soteria’s Pipeline.

institution identifies the IP addresses it owns. We present the details of the data set we
use in Chapter 4.

Each row in a ZEEK connection log lists information about a connection. In our work
we used three fields for each connection:

e id.ortg_h: IP address of the node starting the connection.
e id.resp_h: IP address of the node responding to the connection.

e ts: the time stamp when the connection occurred.

3.2 Feature Extraction

To identify attacks on multiple institutions, we build a directed and weighted graph rep-
resenting all the connections in the ZEEK connection logs. Each IP address represents a
vertex. We add a directed edge from a source to a destination between two vertices that
had one or more connections. Each edge has a weight. The weight is equal to the number
of connections with the same direction between the two vertices. Vertices are labeled as
internal vertex if they belong to an institution or external vertex otherwise. Unfortunately,
this approach for generating a graph creates enormous graphs that are challenging to anal-
yse in a timely manner. For instance, for the data set we have (Chapter 4) this approach
resulted in an enormous graph including over 26.5 million vertices and 1.4 billion edges
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across institutions over the 6 days. To reduce the graph size without losing information
relevant to the attack we do the following. First, we remove all edges representing a con-
nection that is initiated by an internal vertex. We remove internal vertices because Soteria
shares threat information to all institutions, if an internal vertices were to be infected
and acts malicious this threat will be accessible by all institutions this presents a privacy
concern.

Second, we represent each institution by a single aggregate vertex and remove all its
internal vertices. The aggregate vertex represents all the IP addresses belonging to an
institution. We add a directed edge from an external vertex to an aggregate vertex if
the external vertex have contacted any of the internal address of that institution. Each
edge has two weights: conn_count the number of connections the external vertex initiated
to any of the institution’s internal vertices and vert_count the count of the institution’s
unique internal vertices the external vertex is connected to. These two steps significantly
reduce the size of the graph.

In the feature extraction step (Figure 3.1) we compute the following for every external
vertex:

e Outdegree (OD): is the number of edges that begin from this specific vertex. For an
external vertex, this equals the number of institutions it communicated with.

e Outdegree weighted by number of connections (ODW (connection)): is the summa-
tion of all the conn_count weights of all the outgoing connections of an external
vertex.

e Outdegree weighted by number of vertices (ODW (ip)): is the summation of all the
vert_count weights of all the connections of an external vertex.

e Adjacency list (V(adj)): The adjacency list associates each external vertex with the
collection of its neighboring institution vertices.

3.3 Tracking External IPs over time

Institutions periodically share their connection logs. To analyse the activities of external
vertices over time we discretize the input stream. We divide the time into windows. Each
window is [ hours long. We analyse the connections of each window separately. For each
window W (t) at time t we create a graph G(¢) and extract the four features as described
in the previous section.

11
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In Soteria we track the features of each external vertex of the latest N windows. N and
[ are configurable and we evaluate the effectiveness of our approach while varying these
two parameters in Chapter 4. Figure 3.2 shows an example of collecting logs from three
institutions and dividing the time into three windows. A graph is built for each window.

We track the adjacency list (V' (adj)) of an external IP starting from the window it
becomes active even if this extends to more than the N latest windows. To avoid analysing
a previous time window graph, we compute the cumulative adjacency list V(cumltv) at t
for external vertex V, as follows:

Vae(ady) ift=0

Vat(cumitv) = { Va—1) (cumltv) U Vy(adj) if t >0 (3.1)

where ¢ = 0 is the first window V, becomes active. V,;(adj) is the adjacency list of V.
at time t. |V (cumltv)| is the count of all institutions ever contacted by V.

For each external IP, we track OD, ODW (connection), ODW (ip), and |V, (cumltv)|

12



of the latest N windows in a N X 4 matrix.

3.4 Detecting Multi-Institution Attacks

We found that linear regression is effective in identifying vertices that will launch a multi-
institution attack. Linear regression fits the data to a straight line that relates one inde-
pendent variable ¢ to a dependent variable Y.

F(t)=Y = B+1S (3.2)

where t is the time window and Y is the feature of interest. F(¢) is the linear regression
function that approximates Y. B is the value of F(¢) at ¢t = 0 and S is the slope. S
approximates the growth rate of a feature.

For each V,, we keep track of OD, ODW (connection), ODW (ip), and |V(cumltv)|
over N windows. For each V, we fit each feature to a linear regression line. In doing so
we can predict the future outcome of each feature. To fit the linear regression line we
minimize the Residual Sum of Squares (RSS) [32]; a measure of the discrepancy between
the data and the linear regression function.

RSS = i(Y(t) — F(t))? (3.3)

We identify an IP as a MIA if it contacts p(inst) (a threshold of the number of in-
stitutions) institution or more. We set p(inst) to 3 in our study. To predict if an IP V,
will become an MIA we predict if V, will contact more than p(inst) of institutions in the
current or a future time window. To identify a current or future MIA we use:

Flv, (cumie)| (t + 1) + k > p(inst) (3.4)

MIA if |Ve(cumltv)| > p(inst) or
V, is {
not MIA otherwise

Where ﬂvm(cumlm)\(t + n) is the predicted number of institutions V,, will contact by the
time window t 4+ n. k is a constant that is used to tune the prediction.

In addition to predicting which node will become an MIA, we use linear regression to
compute the slopes or the growth of the features for each external vertex. The growth of
these features is used in the following steps in the Soteria pipeline.

13



o V, (cumltv): The cumulative set of institutions V, contacted throughout its lifetime
till time ¢

® S|V, (cumltv)|: Growth of the cumulative number of institutions V,, connects to through-
out its lifetime till time ¢

e Sop,: Growth of the number of institutions connected to V, per time window.

® SODW (connection),: Growth of the number of outgoing connections of V, per time
window.

® Sopw(ip),: Growth of the number of internal IPs communicated with per time win-
dow.

3.5 Severity Estimation

The attack detection step may identify hundreds of potential MIAs. Tasking security
analysts to analyse these potential attacks in a timely manner is a daunting task. The
severity estimation step computes a severity indicator for each potential MIA and uses
it to identify the most severe MIAs. This step helps the security analyst to prioritize
analysing attacks with high severity indicators.

The severity indicator uses all the static and growth features computed in the previous
two steps in the pipeline. The severity estimation technique should have three properties:
first, given the large number of external IPs, the severity indicator should be efficient to
compute. Second, it should maintain the linearity of each feature, i.e., if feature X for
IP1 is larger than X for IP2, this relation should be represented in the severity estimation
mechanism. Third, it should tolerate existence of extreme anomalies.

We first considered normalizing each one of the seven features (three static and four
growth) to the range [0, 1]. Adjacency list V' (adj) and cumulative adjacency list V. (cumltv)
are not included in calculation but the size of these lists are included. The classical nor-
malization approach of a feature X is:

—_ XV—X.mz'n (35)

Xnorm,V X.maxz—X.min

Where Xy is the value of a feature X for IP V' and X, v is the normalized value of
Xy. X.man is the smallest value for the feature among all IPs in the data set. X.max is
the largest value for X in the data set. While this approach is simple, it is not effective.
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This is because this approach does not handle highly skewed data well. For instance, the
majority of attackers would create hundreds of connections, while an aggressive attacker
may create hundreds of thousands of attacks which significantly skews X.max and stretches
the bounds of normalization. This causes the majority of values to be placed on the lower
end of the normalized range and makes it hard to differentiate between attacks since the
normalized values are very close.

To overcome this shortcoming, we used a robust scaler [33]. As shown below.
0 Xy < X.Q
Xnorm,V = { 1 XV > XQS (36)
% otherwise

Where Xy, is the value of a feature X for IP V and X, v is the normalized value
of Xy. The robust scaler [33] finds the quartile for each feature X. X.Q; and X.Q3 are
the values of the first and third quartiles. The employeed Robust Scaler normalizes the
skewed values less than the first and greater than the third quartiles to the values 0 and
1 respectively, then it normalizes the values between the first and third quartiles to the
range [0, 1]. This approach effectively handles highly skewed data.

The normalized values of all features per external IP are added. To give an indicator
with values in the range of [0, 1]. The aggregated value is then normalized to get indicators
values in the range of [0,1]. This approach effectively computes the severity indicator,
preserves the linearity of the features, and handles skewed values.

3.6 Predicting Future Targets

In the next step we try to predict, for each MIA, which institution will be targeted next.
Our first attempt to predict the future targets of each attack explored techniques to predict
which institutions are often targeted together. We experiment with the co-occurrence
matrix model [13] which is successfully used in recommendation systems to predict which
items occur together. As our results show (cf. Section 4) this approach is not effective
in predicting future targets. This is because Co-occurrence matrix can only capture the
relationship between institutions and does not capture the sequence of the attack, neither
does it capture the future possible growth of the attack.

We also explored using the Long Short Time Memory (LSTM) model [18]. LSTM is
effective in predicting sequences of events. This approach captures the growth of an attack
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and uses it to predict the next targets. This approach achieved better results than the co-
occurrence matrix model but did not achieve high predictability. This is because attackers
do not always attack institutions in the same exact order and we need it to learn information
from the past and future of the sequences. To overcome this challenge, we resorted to
using bidirectional LSTM with an attention mechanism (ABiLSTM). ABIiLSTM learns a
sequence of events in both directions, forward and backward, to better predict targets
despite variations in the order in which institutions are attacked. It also better capture
relationships between institutions in a specific window and across time windows.

Model Design. Figure 3.3 shows the network structure of the ABiLSTM model we
use. The model has the following stages: input encoding, BiLSTM network, attention
mechanism, and an output layer. The rest of this section details the design of each of these
stages. The presentation in the rest of this section is geared toward readers versed in ML
methodology and can be skipped by the average reader without loss of context.

BILSTM Attention Dense Prediction
Inst A Inst B Inst C Instn

W, ® ® O ... @ > |LsTM |LsT™ h, h ° °
o

w ® @ @® ... @ —> sM LsTM |h b, o ©
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W,  ® @ @ ... @ > |[LSTM| LSTM  |h hyt °
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v, ® ® @ .. ® > [istv| [Lstm h 'h - O °®

=

Figure 3.3: Design of the model for next target prediction.

Input Encoding. We first encode V (cumltv) for each external IP using multi-hot shot
encoding. For each time window, we create a bit map of size M which is the total number
of institutions. An index in the bitmap corresponds to an institution. A bit is set if the
institution has ever been contacted by this IP address. Since we look into the last N time
windows, the input to the model is an M x N array representing V (cumltv) in the last N
time windows.
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BiLSTM Model. Figure 3.3 shows the structure of the ABiLSTM model. The BiLSTM
model uses an M x 2 array of LSTM cells organized in M pairs. One LSTM in a pair
learns the forward direction of a sequence while the other learns the backward direction.
The output of the two LSTM blocks is concatenated. The pairs are organized in a stack
as shown in Figure 3.3. Each LSTM cell has three gates: input gate (i;), output gate (o),
and forget gate (f;), ¢ is the window timestamp.

Equation 3.7 shows the input gate of a cell while Equation 3.8 generates a candidate
vector which is combined with the input gate to form the update gate for a cell. The
update gate controls the information stored in a cell at the current time window ¢.

it = O'(ZZ [ht—la I’t] + bl)7 (37)

ét = tanh(Zc[ht,l, ht, xt] + bc): (38)

where x; represents the input of that cell at time ¢, h; represents the output of the cell
at time t and position m in the LSTM stack, h;_; represents the outputs value one time
step before the current time and hy(,—1) with the output value of the cell underneath it.
Similarly, ¢; and ¢;_; represent the memory unit at time ¢ and ¢t — 1. o represents the
sigmoid activation function, and tanh represents the tangent function. Z; and Z. represent
the weight matrices, and b; and 0. are the bias values.

To decide whether to discard information from the previous time step and from the

lower LSTM block a forget gate is used as shown below:

fi = 0(Zglhu—1, by, Te] + by). (3.9)

The memory value for this time step is calculated using Equation 3.10. Note that we
use the memory value ¢;_; from the previous time step.

¢ = fi®ci1 + i ®C, (3.10)

The output gate determines the value of the next hidden state. This state contains
information on previous inputs. First, the output gate uses a sigmoid function to decide
which portion of a cell state to return (Equation 3.10). We take the output of the output
gate and perform the hadamard product (®) with the output of the tanh function of the
memory value from this cell.
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Oy = O'(Zo[htfl, ht, iCt] -+ bo) (311)

hy = 0;® tanh(¢;) (3.12)

h; is the hidden state of the cell which is shared with the next layer of the model and
the next LSTM cell. The output of the BiLSTM model will be a concatenation of the
outputs of both direction models, which will hence forth be denoted as h;.

Attention Layer. The BiLSTM hidden layer outputs h; through the activation function
to obtain the correlation coefficient u; using Equation 3.13.

u; = tanh(Z,hy + b,) (3.13)

Where Z, represents the weight matrix, and b, represents the bias values. First, we
assign weights that demonstrate the importance of each output of the hidden layer by
obtaining the weight coefficient a;:

exp(uy)
S exp(u;)

Then we calculate the product of the weight coefficient and the output of the hidden
layer to obtain the output vector v of the attention layer, as shown in Equation 3.15.

v=Y ah (3.15)
N

(3.14)

ay =

Dense and Output Layer. Finally, the prediction result is obtained through the output
layer using a sigmoid function. The output layer contains as many neurons as there are
institutions, each will produce an output for each institution. The model outputs the
probability that each institution will be targeted. Because this is a classification problem
we need to convert probabilities into binary values. Therefore, we can simply round the
probabilities into integers using a threshold. This threshold is tuned to provide better
predictions. This gives us a multi-hot shot encoding vector, similar to the input matrix.
We reverse the encoding we did on the input which gives us a list of institutions that are
most likely to be targeted next. Prediction Model training and parameter tuning.
We implemented the model on Keras with a Tensorflow backend [22]. For experiments,
we use the datasets indicated in 4.1 which is split into three groups: 65% as the training
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set, 15% for validation, and 20% for testing. We use the training set to train the model,
then use the validation set to tune the hyper parameters. We also attempted to use
dropout layer with rates varying from 0.05 to 0.2 but we found that it degrades the models
performance. We also used, the binary crossentropy based loss function and the gradient
descent algorithm with Adaptive Moment Estimation [23] are used to learn the model
parameters of neural networks. The default parameters of Adaptive Moment Estimation
is learning rate=0.001, beta 1=0.9, beta 2=0.999, epsilon=1e-08. We perform a full cycle
of training, validating and provide prediction in each pipeline run and we store the weights
for the next cycle.

3.7 Dashboards and Reporting

The last step of the pipeline creates a dashboard and reports to present the findings to
the security analysts. All the static and growth features as well as the severity metric are
presented to the institutions. The severity metric is used to order the external IPs. The
display of the list of MIAs is customised for each institution. The list of MIAs is split into
two categories: a list of MIAs already targeting an institution and a list of predicted MIAs
that will potentially attack an institution in the near future. In order for the institutions
to comprehend the meaning of the severity score we classify different ranges into labels.

Severity Score Severity Label

< 0.25 very low severity
< 0.25 and < 0.5 low severity
> 0.5 and < 0.75 | medium severity
> 0.75 high severity

Also in the dashboard we provide a possible target rate for each external threat that has
not reached the said institution. This value is produced using the raw numerical outputs
of the model. These raw numbers are normalized using the simple normalization equation
3.5.

Possible Target Rate Label
< 0.25 very low possibility
< 0.25 and < 0.5 low possibility
> 0.5 and < 0.75 possible
> 0.75 high possibility
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Figure 3.4 demonstrates the dashboard as seen by the participants. This is the main
dashboard for Soteria, which contains analysis extracted from our pipeline and others. We
will only explain the analysis that pertain to Soteria’s pipeline. As per the label on the
figure:

1. Reporting rate: As we indicated earlier ZEEK logs are supplied by the tens of partic-
ipants, the issue is that some institutions are not supplying their logs in time. This
affects the models ability to predict. Therefore we decided to provide an indicator
that describes how available and timely is their data to the Soteria pipeline. In this
case, this sample institution has been providing their logs in a timely manner.

2. Pie chart of threats that has been detected by Soteria. This is used to gauge what
are the portions of MIAs in each category.

3. Pie chart of how possible threats that have been detected by Soteria, will reach this
institution.

4. List of MIA detected by Soteria that have reached this institution. They are sorted
based on the severity score. Each IP is clickable to another dashboard that details
information on that said IP.

5. Pie chart of the severity of threat detected by Soteria that have reached this institu-
tion.

6. List of MIA detected by Soteria that have not reached this institution. They are
sorted based on the severity score and possibility of reaching said institution. Each
IP is clickable to another dashboard that details information on that said IP.
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Chapter 4

Evaluation

In our evaluation, we evaluate the performance of Soteria in detecting future attacks, its
accuracy in identifying the next targets, and the impact different configurations have on
the detection performance.

4.1 Evaluation Setup

Dataset Details. Our dataset includes the ZEEK connection logs from 52 Canadian
institutions connected to the CANARIE backbone network. We use the data collected
over six days from the start of the 25" of January until the end of the 30" of January
2022. The dataset consists of over 15.5 billion connections.

There were over 12 million unique external IP addresses initiating a connection to any
of the institutions during the six days. Out of the 12 million, 2.7 million of them initiated
connections to multiple institutions. The number of connections from external IP addresses
per day fluctuates across the six days with noticeable drops during the weekends. The drop
could be interpreted as a result of the institutions being less active during the weekends.
Figure 4.1 shows the number of connections per hour.

Each external IP is tracked from the moment it starts its first connection to an institu-
tion until it stops communicating with any institution. For external IPs that communicate
with multiple institutions, Figure 4.2 shows the life span and attack progress of external
IPs. Life span is the total time the external IP was active. It is the time period between its
first connection and last connection that IP made in the data set. The life span of 70% of
the external IPs is less than 3 days. Fifty percent of the external IPs had a life span of less
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Figure 4.1: Number of connections per hour during the six days.

23



1.0

0.8

0.6

CDF

0.4

0.2/ |/ === Life Span
= Attack Progress

0.0 50 100 150
Hours

Figure 4.2: CDF of the lifespan of an External [P and the attack progress.

24



than one day. For each external IP we extract the full list of institutions it contacts. The
attack progress line in Figure 4.2 shows the progress an external IP makes in contacting
institutions in this list. The figure shows that an attacker contacts 70% of its target list
within the first 24 hours.

Data Preprocessing. To simulate a stream of updates from institutions we split the
connections into time windows. Given that a large percentage of attacks complete within
24 hours, we vary the window size [ from 1, 3, 6, and 12 hours. Each window contains all
the connections for that given time period. To simulate a real workload we split the data
and then feed the data to the pipeline for analysis.

When we train the model we use multiple windows as input. Unless otherwise specified
we use the current windows and 2 previous windows as input.

4.2 Labeling Multi-Institution Attackers

Unfortunately, the attackers in our dataset are not labeled. We attempted to utilize public
databases to label our data but we found them unreliable as there is a high degree of
false positives (i.e., an IP is recycled and is no longer malicious such as the case with
malicious actors using cloud services) and false negatives (i.e., threat has not been reported
by anyone). To overcome this shortcoming of our dataset we select 387 random samples
of external IP addresses that contacted 3 or more institutions. We selected the sample
size using the Sample Size Computation for the Population Mean Confidence Interval[19].
We felt getting 95% confidence interval (CI) and 5% margin of error (MOE) is sufficient
results with a manageable sample size. Given a CI of 95% and MOE of 5% the minimum
sample size should be 385 random samples, therefore we selected 387 which adds 2 more
samples in case of mistakes. We manually inspect the logs and interactions with each one
of the IP addresses and identify MIAs. We found 369 real multi-institution attacks and
18 benign IP addresses. This indicates that 95% of external IP addresses that contact
multiple institutions are malicious actors with a 95% CI and a MOE of 5%. In this paper,
if an external IP address contacts more than 3 institutions we label it as MIA. Due to our
familiarity with the network traffic of the institutions we choose 3 or more institutions as
the threshold p(inst) because at 2 institutions there is a high degree of benign IPs.

Metrics. We use the following two metrics in our evaluation: recall which gauges how
many of the true positive we have detected and in the opposite view the false alarm which
gauges how many of the True Negatives we have incorrectly labeled positive.
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Testbed. We conduct our experiments using a 17-node cluster. Sixteen nodes are used to
ingest data and extract features. These nodes have an Intel(R) Xeon(R) Silver 4208 CPU
with 32 cores, 188GB of RAM, and 48TB of storage space. One node is used to run the
rest of Soteria pipeline. The node has an Intel(R) Xeon(R) Gold 5120 CPU with 56 cores,
376 GB of RAM, and a NVIDIA Tesla P40 GPU.

4.3 Detection of Future Multi-Institution Attacker

Using our dataset we measure the accuracy of our MIA detection step. For this evaluation,
we use a window size [ of 3 hours and we use a history N of 3 previous windows and try
to predict if an IP address will become a MIA in the next 24 hours. Figure 4.3 shows
the recall and false alarm of our attack detection step. The figure shows that our linear-
regression-based technique detected more than 95% of attacks with lower than 15% false
alarms. All False alarms have a severity level of less than 25%, which are presented last in
the list of threats to search.
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Figure 4.4: Recall and false alarm of detecting next target of MIA.

4.4 Predicting the Next Target

We use our dataset to measure the accuracy of predicting the next target. We use a window
size | of 3 hours and use a sequence N of 3 windows. Figure 4.4 shows the recall and false
alarm of the next target prediction step. We compare the performance of using ABiLSTM
and co-occurrence matrix. Figure 4.4 shows that our approach with ABiLSTM achieves
4.7 times higher recall rate. ABILSTM achieves 95% recall rate with 20% false alarm rate
while the co-occurrence matrix achieves only 20% recall rate with 15% false alarm rate.
Which highlights our previous discussion that BiLSTM'’s supersedes Co-occurence matrix
due to its added ability to learn data sequences and future growth of attacker.

4.5 Effect of Window Size

In this section, we evaluate the effect of window size [ on the accuracy and the speed
of the detection. We fix the number of windows N to 3 windows and vary the windows
size | between 1, 3, 6, and 12 hours. Figure 4.5.a shows the recall and false alarm rate for
identifying future attacks. The results show a slight variation in the recall rate with smaller
window sizes having better recall rates. Due to the shorter lifetime of the attackers and
their rapid attacking rates, smaller windows are able to capture this type of behaviour. For
instance window size of 1 achieves 97% recall rate compared to 92% recall rate for window
size of 12. There is no significant change in the false alarm rate.
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Figure 4.5: Fixing the number of windows to look back at 3 windows.

Figure 4.5.b and 4.5.c evaluates the effect of window size on the accuracy of predicting
the next target. We evaluate both ABiLSTM and co-occurrence matrix. Figures 4.5.b and
4.5.c show that changing the windows size does not significantly change the recall or the
false alarm rate of ABiLSTM. For co-occurrence matrix, changing the window size changes
the recall rate with the best being with a window size of 1 achieving 26% and the worst
being 20% with a window size of 3. The results show under all window sizes ABiLSTM
achieves 3.5 to 7 times higher recall rate without a significant increase in false alarm rate.

4.6 Effect of the Number of Windows

In the previous section, we kept the number of windows N fixed but varied the window
size [. This results in each configuration processing a variable size of history. The number
of connections in 3 windows of a 1 hour window size is much smaller than 3 windows of 12
hours windows size. In this section, we fix the look back time to 24 hours with different
windows sizes. We use 24 windows with 1-hour long windows, 8 windows with a 3-hours
window size, 4 windows with a 6-hours window size, and 2 windows of a 12-hour window
size.

Figure 4.6.a shows the recall and false alarm rate for identifying future attacks. The
results do not show a noticeable change in the recall or the false alarm rate with different
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Figure 4.6: Soteria Fixing the number of hours to look back at 24 hours.

window sizes.

Figures 4.6.b and 4.6.c evaluates the effect of window size on the accuracy of predicting
the next target using both ABiLSTM and co-occurrence matrix. Similar to the previous
results the figures show that changing the window size while using the history size does
not bring significant change to the recall or false alarm of these techniques.

Interestingly, there is no noticeable change in results for both MIA detection and path
prediction between fixing the number N to 3 or fixing the look-back time to 24 hours.

In general we see slight benefit in having a smaller number of windows with smaller
window sizes, and that is due to quick nature of these attacks. We saw in figure 4.2 that
approximalty 80% of institutions are targeted within the first day. The performance gap
between the smaller and larger windows is not large and that is because the model is
evaluated based on what is remaining in the attack, larger windows miss larger progress
of the attacks and only have much less attack scope to predict. This can be demonstrated
further in the next section.
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4.7 Speed of Attack Detection

Our analysis in Section 4.1 shows that attacks can span days. The earlier we detect an
attack the better. We evaluate how early our technique can detect an attack. We analyse
the dataset and identify for each MIA the complete list of institutions it will attack. Figure
4.7 shows a box plot of the percentage of the MIA life at which Soteria detects the attack.
We compare two configurations: windows size of 3 with a fixed number of windows of 3,
and a windows size of 3 with a total look-back period of 24 hours. Figure 4.7 shows that
using smaller window sizes allows for predicting the attack earlier. With a window size
of 1 hour detecting the attacks before 20-40% of its life span compared to 75-85% with a
window size of 12. Surprisingly using a fixed number of windows achieves better results.
With a window size of 1, using 3 windows the attack is detected at around 20% of its life
span while when using 24 hours the attack is detected when it is around 40% of its life
span on average. This is because smaller windows help to detect an attack earlier, and a
smaller number of windows captures the quick nature of these attacks. Under all window
sizes using a fixed number of windows performs better on average.

4.8 Example MIAs

In this section we demonstrate 2 examples of the most dominant types of large scale
MIAs. Figures 4.8 and 4.9 are stacked area figures counting the number of connections
each MIA has initiated and to which institution. The connections are counted utilizing
an hourly windowing. Figure 4.8 shows the most dominant type of large scale MIA. It
started communications quickly and grow rapidly. It reached the peak of its activity in
approximately 6 hours, in which it has most connections, and targeted all the institutions
at that point. It has a very short life span of only 14 hours. Upon further investigation,
on the type of vulnerability it was searching, we have found that it targeted multiple
application types including webapps, ssh, and others.

Figure 4.8 shows the second most dominant type of large scale MIA. This type is
constantly active monitoring for vulnerabilities . It has an almost cyclical pattern, initiating
connections quickly then dying off. It continually targets the same set of institutions on a
consistent basis. This MIA seems to be dedicated to its task. Upon further investigation,
on the type of vulnerability it was searching, we have found that it targets a large range
of ports.
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Chapter 5

Conclusion

We present Soteria, a data processing pipeline for detecting multi-institution attacks. Sote-
ria can detect current and future multi-institution attacks, rate the severity of the attacks,
and predict its future targets. Our evaluation shows that Soteria is able to identify future
attacks and identify their future targets with high performance.

Soteria is currently deployed in production as part of CANARIE IDS tool set which
serves tens of educational institutions in Canada.

As for future work there are three main directions. We filter out two types of external
IPs and we dont detect threats coming from them, due to the large number of false positives
they generate. The first are external IPs that are shared with large number of users, such
as a Tor node, are filtered out. It is difficult to differentiate between the different users
using the same exit node and it would be incorrect to monitor the node like any other
external IP. The second IPs that are filtered are registered DNS servers that only initiate
DNS connections.

The second issue is that some threat actors distribute their attacks by using multiple
IPs to launch their attack. Although we can monitor the attackers individual IPs, we can
not learn the whole picture of the attacker. A research direction is to cluster IPs together
to identify the attacker. These clustered can be identified as a single attacker and feed to
Soteria provide a full picture of the attack providing a more accurate analysis.

A third direction would be to work on correlating Soteria with the results of other
threat analysis tools and threat feeds. Soteria analysis does a good job at detecting MIAs,
but does not provide information on the attack type. Therefore, correlating results with
other tools can provide additional information into the kind of threat. Furthermore, this
correlation can provide additional information to improve severity ratings of these threats.
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