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ABS" 

A new method for texture coding which combines 
2-D linear prediction and stochastic vector quantization is 
presented in this paper. To encode a texture, a linear 
predictor is computed ftrst. Next, a codebook following the 
predction error model is generated and the prediction error 
is encoded with VQ, using an algorithm which takes into 
account the pixels surrounding the block being encoded. In 

they were not yet using the full capability of the SVQ 
scheme. 

It will be shown in this paper that the main 
limitations of conventional SVQ do not arise firom the lack 
of an appropriate model. Using the very simple AR model, 
we propose a new approach to SVQ that, when applied to 
texture images, provides very good results. 

Organization of the paper 

In section 2, some well known concepts rclated to 
are reviewed in order to 

of 

the decoder, the error image is decoded first and then 
filtered as a whole, using the prediction filter. Hence, 
correlation between pixels is not lost from one block to 
another and a good reproduction quality can be achieved. 

prediction of 2-D 
the notation and terminology used in the 

the paper. 

1. INTRODUCTION 

Vector quantization (VQ) has extensively been used 
as an effective image coding technique [I]. One of the 
most important steps in the whole process is the design of 
the codebook. The codebook is generally designed using 
the LBG algorithm which uses a large training set of 
empirical data that is statistically representative of the 
images to be encoded [2]. Stochastic vector quantization 
(SVQ) provides an alternative way for the generation of 
the codebook [3]. In SVQ, a model for the blocks of the 
image is computed first and then the codewords are 
generated according to this model and not according to 
some specific training sequence. The results using an 
autoregressive (AR) model have shown that the proposed 
method is appealing for image coding applications, due to 
its simplicity and ease of implementation, but it is also 
clear that the technique presents some limitations that need 
further improvement. 

It was believed that the main limitation of the SVQ 
was the simplicity of the AR model used in the first 
implementations. Hence, research efforts were conducted 
towards new models, in particular M A  models, which 
could provide a better description of the statistics of the 
image [4]. The new results showed some improvement but 

_ _  
Section 3 is devoted to the description of the 

coding/decoding system. Results and conclus 1 ons are 
presented in sections 4 and 5, respectively. 

2.2-D LINEAR PREDICTION 

Given a monochrome digital image u[x, y ] ,  a linear 
predicfor U can be defined by 

The order K of the predictor will be given by 

The predictor coefficients are chosen such as to 
minimize the mean square estimafion error (MSEE),  
considering u[x,y] a random variable being estimated in 
terms of the RVs u[x-a; y-PJ 151. 

It will be assumed that the pixels are ordered as if 
they were the words of a paragraph, that is, by rows. 
Hence, we can define a causal predictor as one that uses 
only pixels previous to the one being predicted (figure 1). 
Note that the number of predictor coefficients is given by 

nK=4(1+2+ ...+K) =2K(K+1) (3) 

The prediction error e[x, y ]  is the difference between 
u[x, y] and its prediction: 

0-8186-6950-0/94 $4.00 0 1994 IEEE 
119 



restoration 

Y +  

Figure 1. Terms used by a 2-D causal linear predictor. If 
the order is K, all the terms labeled with a number less than 
or equal to K are used. 

fdb ,Yl 

Codec of e[x,y] I - -  - _ - - _ _ _  I 

Figure 2. SVQLP scheme. 

Eq. (4) defines a system with input u[x ,y]  and output 
e[x,y],  called the prediction errorfilter (PEF). The inverse 

prediction filter (PF): 
system has input e[x, y ]  and output u[x, yl and is called the 3. STOCHASTIC VECTOR QUANTI2;ED 

LINEAR PREDICTION (SVQLP) 

u[x,yl = GkyI + e k y l  The AR model can be seen as a linear prediction filter 
for the image. With this in mind, our objectiv : is to find 
out the predictor required to get a small prediction error 
and to efficiently encode such error. Using this blpproach, a 
modified SVQ scheme -we have called it ,itochastic 
Vector Quantized Linear Prediction (SVQLP) - turns out 

= acs,B, u[x-a, Y-PJ + ~ [ L Y I  
( 5 )  

The following results were experimentally obtained 
from a large number of observations: 

2. The first-order probability density function (PDF) 
of the prediction error is approximately gaussian: 

3. A predictor of order K=2 results in a prediction 
error with significantly less variance and more 
decorrelated samples than a predictor of order K=I .  

We are interested in the stochastic coding of the 
prediction error using a vector quantizer. It must be kept in 
mind, however, that our ultimate objective is not to encode 
the prediction error itself, but the original image u[x,y] 
instead. 

The idea of encoding a signal by means of encoding 
its prediction error is not new. Some related techniques 
have successfully been applied in speech coding 161, 
although our method differs in some important points. 

whole, using the F’F. Hence, correlation betwecn pixels is 
not lost from one block to another and a good 
reproduction quality can be achieved. Furthermore, the 
“block effect” problem found in block-based image coding 
schemes has been eliminated. The block effect x i s e s  from 
considering the image blocks as individual entities and not 
taking into account the image as a whole. While this 
problem cannot be avoided in classical VQ (unless the 
image is filtered after decoding it), the modelini: feature of 
SVQ provides the basis for a new approach to image 
coding which not only corrects the block effect but also 
greatly increases the performance of the coding system. 
Figure 2 shows the SVQLP scheme. 

Encoding/decoding of the prediction error 

The prediction error is coded using a mcdified VQ 
scheme. Since VQ is known to be much mom effective 
when applied to highly correlated signals, it may seem 
contradictory to code the prediction error (a dticorrelated 
signal) using VQ. This, however, is not the case, since, as 
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was previously noted, we are not interested in reproducing 
exactly the prediction error but the original signal instead. 
The blocks of the error image are not coded in such a way 
that the distortion in reproducing them is minimized, but 
rather the distortion in reproducing the original image is 
minimized, taking into account the effect of surrounding 
blocks after filtering. Note that the input to the prediction 
error encoder in figure 2 is not the prediction error itself, 
but the original image instead (after removing the mean). 
This is because, as will be shown later, the encoder does 
not need to h o w  the prediction error to encode it. 

Ideally, when encoding a block of e[& y ] ,  the encoder 
should evaluate, for every codeword Wi, the image that 
would result at the output of the prediction filter in the 
decoder, taking into account the codewords used to encode 
the other blocks. Then, the codeword Wj resulting in the 
lower distortion with respect to the original image should 
be chosen. This, however, cannot be accomplished because 
some of the blocks needed to compute the image at the 
output of the PF have not yet been coded. The problem is 
that pixels are filtered in an order (by rows) different to 
the order in which they are encoded (by blocks), which 
makes it impossible for the encoder to evaluate exactly the 
effect of choosing a particular codeword to code a block. 
The following considerations will help us to both simplify 
and solve the problem. 

Distortion evaluation 
Rather than to evaluate the distortion over all the 

pixels that could be influenced by placing a codeword at a 
particular location, we can restrict ourselves to the pixels 
at the position of the block being encoded, since it is there 
where different codewords should produce greater 
differences in output distortion. 

Block filtering 
In principle, since the PF is recursive, to compute the 

output of the prediction filter at a particular pixel, all 
previous output pixels should have already been computed. 
Suppose now that, by some other means, we h o w  the 
value, at the output ofthe PF, of the pixels surrounding 
the block being encoded. In that case, we would be able to 
compute the output pixels at the location of the block, 
filtering exclusively the pixels inside the block. 

Unknown blocks 
If the blocks are encoded by rows (of blocks), when 

encoding a particular one the encoder does not know in 
advance which codeword will be assigned to those blocks 
placed on the right. The effect of the current block at the 
output of the PF, however, depends on the value of 
surrounding pixels at the output (figure 1). Those on the 
left and/or above can, in principle, be known because the 
corresponding blocks have already been coded. Those on 

the right can be estimated from the value we wish they 
had the value of the corresponding pixels in the original 
image U[& Yl. 

Superposition 
For every block of the prediction error to be coded, 

the encoder needs to know, for every codeword Wi, the 
effect of placing the codeword at the location of 1 he block. 
This would require to filter every codeword at the 
specified location -assuming we “know” the vilues of 
surrounding pixels at the output of the PF. Such filtering 
can be dramatically reduced if we regard the block to be 
filtered as the superposition of two signals: (1) the 
codeword itself (with zero surrounding pixels) aid (2) all 
the remaining pixels (with zero values at the location of 
the block). Thus, we need to filter every codeworfi W, only 
once before encoding any block. The result is stored in 
what can be viewed as a second codebook, { vi}. 

Decision rule at the VQ encoder 
The contribution of surrounding pixels at the output 

of the PF must be computed only once for each block to 
be coded; the resulting (filtered) block must be added to 
each filtered codeword V i  and the result of the sum 
compared with the corresponding block of the original 
image. The encoder chooses the index i which nlinimizes 
the distortion between u[x, y]  and G[x,y] at the lccation of 
the block being coded. 

After encoding a block, it is convenient to ~,e-filter it 
together with one or more previous blocks t13 correct 
possible errors in the estimation of the pixels smrounding 
the next block to be coded. 

The objective of the procedure outlined above is to 
reproduce, at the encoder, the decoding process, so that the 
codewords can be chosen taking into account the way they 
will be used. Figure 3 shows the structur: of the 
prediction error codec. 

The generation of the codebooks is depicted in figure 
4. The noise samples have gaussian first-order PDF with 
the same variance as e[x,y]  and are mutually intnrrelated 
[7] .  After filtering with the PF, the codeword% Vi have 
statistics (locally) “similar” to those of u[n, y ] .  Such 
codewords are used by the VQ encoder to avoid ~~edundant 
filtering of every W i  for each block to be encclded. The 
decoder does not need them since the whole prediction 
error is globally filtered after decoding it. 

4. RESULTS 

We have used several textures from the Brodatz 
album [SI to test the method, achieving very high 
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Figure 3. Codec of e[% y]. 

compression rates with good visual results. We present, as 
an example (figures 6, 7 and 8), three textures of size 
256x256, each coded at 0.16 and 0.04 bitslpixel 
(compression rates C=50 and C=200), using blocks of 
size 8x8 and 16x16 respectively, with codebooks of size 
L =  1024 and a predictor of order K=2 (12 coefficients). 
Similar results have been obtained for other textures, either 

In these figures, no effort has been made to code the 
parameters of the system (a,@, and oe). The number of 
bits required to code them using the computer intemal 
representation is much less than the number of bits 
required to code the blocks of the prediction error. On the 
other hand, we have experimentally found that, using a 
uniform scalar quantizer, 8 bits for each predictor 
coefficient, 8 bits for pu and 4 bits for o, are enough to 
obtain the same quality and compression rates, if the 
encoder uses the same values as the decoder. 

regular or irregular. 

5. CONCLUSIONS 

A method for texture coding, capable of achieving 
high compression rates with good visual results has been 
presented, using well known concepts such as stochastic 
processes, linear prediction and vector quantization. What 
is new is the way these concepts are combined. Of 
particular interest is the design of the VQ used to encode 
the prediction error. 

m ~1 wi 171 
formation generator 

L”.l 
u-Codebook 
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I 
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Figure 4. Codebook generation. 

An interesting feature of the method is thi it the visual 
quality of the compressed image is degraded gradually as 
the compression rate increases. There is no c3mpression 
threshold beyond which quality rapidly decays. 

SVQLP is applicable to textures only. ‘That means 
that the image must be homogeneous in some sense. This 
is because contours of an arbitrary image cannot be 
preserved after filtering by the PF and also bec; iuse neither 
the mean nor the variance of the blocks are encoded as is 
usually done in conventional SVQ; these par;uneters are 
included in the model and, hence, are the same for every 
block. 

In order to take advantage of the assumption of 
texture homogeneity underlying the stochastic: approach, 
the original SVQ has already been applied to object-based 
image coding schemes [9]. Application of SVQLP to such 
systems is currently being developed with promising 
preliminary results. 
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(a) Original image (8 bitslpixel) (b) Coded at 0.16 bitdpmel (C=50) 

Figure 6. 

(c) Coded at 0.04 bitdpixel (C=200) 

(a) Original image (8 bitslpixel) (b) Coded at 0.16 bits/pixel (C=50) 

Figure 7. 

(c) Coded at 0.04 bitdpixel (C=200) 

(a) Original image (8 bitslpixel) 
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