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ABSTRACT 

The problem of estimating rigid motion from projections 
may be characterized using a nonlinear dynamical system, 
composed of the rigid motion constraint and the perspective 
map. The time derivative of the output of such a system, 
which is called the “motion field” and approximated by the 
“optical flow”, is bilinear in the motion parameters, and 
may be used to  specify a subspace constraint on either the 
direction of translation or the inverse depth of the observed 
points. Estimating motion may then be formulated as an 
optimization task constrained on such a subspace [4]. 

We pose the optimization problem in a system theoretic 
framework as the the identification of a nonlinear implicit 
dynamical system with parameters on a differentiable man- 
ifold, and use techniques which pertain to  nonlinear estima- 
tion and identification theory to  perform the optimization 
task in a principled manner. 

The application of a general method presented in [12] 
results in a recursive and pseudo-optimal solution of the 
visual motion estimation problem, which has robustness 
properties far superior to  other existing techniques we have 
implemented. 

Experiments on real and synthetic image sequences show 
very promising results in terms of robustness, accuracy and 
computational efficiency. 

1. MOTION ESTIMATION FROM A 
DYNAMIC MODEL 

Let a scene be represented by a set of N feature points in 
3D space moving rigidly with respect to  the viewer; the 
“visual motion estimation” problem is defined by the rigid- 
ity constraint and the perspective projection equations. If 
Xi = [X; Y; 2iIT are the coordinates of the i th  point and 
xi A [zi yiIT the corresponding projections, we may write 
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where ni represents an error in measuring the pcssition of 
the projection of the point i and A represents an i-leal per- 
spective projection. Solving the visual motion problem con- 
sists of estimating the ego-motion V, R from all tl e visible 
points, i.e. reconstructing the input of the abovt: system 
from its measured output. We show that it is pcssible to  
invert the above system using a technique which ias been 
recently introduced in [ 121 for identifying nonlinem implicit 
systems with parameters on a topological manifoltl. 

The scheme is motivated by the work of Heeger and Jep- 
son [4, 51 and may be considered as a recursive solution of 
their task using methods which pertain to  the field of non- 
linear estimation and identification theory. As a result, the 
minimization task which is the core of the subspace method 
for recovering rigid motion needs not to  be performed by 
extensive search, as it is done in [4]. Instead, an Implicit 
Extended Kalman Filter (IEKF) [2, 7, 8, 121 is i i  charge 
of estimating the motion parameters recursively a :cording 
t o  nonlinear prediction error criteria (for an intrc bductory 
treatment of Prediction Error Methods (PEM) in a linear 
context, see for example [14]). As a result, our method ex- 
ploits in a pseudo-optimal manner the informatiox coming 
from a long stream of images, making the scheme robust 
and computationally efficient. 

2. MOTION RECONSTRUCTION VIA 
INVERSION CONSTRAINED ON SUBSPACES 

Consider the following expression of the first deri-rative of 
the output of the model (1)) which is referred to  as the 
“motion field”: 

where 

1 0 -2i 

&=[(I 1 - y i ]  (3) 

If we observe a sufficient number of points xi Vi = 1 . .  . N, 
we can write an overdetermined system which can be solved 
for the inverse depth and the rotational velocity in a least- 
squares fashion. To this end, we rearrange the abo {e equa- 
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where V E S2 is represented in local (spherical) coordinates 
as V(O,+). When we observe N points we can rearrange the 
above into a vector equality: 

where 

and x is a 2N column vector obtained by stacking the 
xi Vi = 1.. . N on top of each other. At this point we 
could solve the above equation in a least squares fashion 
for the inverse depth and the rotational velocity: 

where the symbol t denotes the pseudo-inverse. 
then plug the result into equation (5), 

We can 

ending up with an implicit constraint on the direction of 
translation 8,d. By rearranging the terms and writing ex- 
plicitly the pseudo-inverse we get the following subspace 
algebraic constraint [4]: 

We can now try to  approximate this constraint by solving 
the following nonlinear optimization problem: 

In other words we are looking for the best vector in the 
sphere such that i is the_null space of the _orthogonal com- 
plement of the range of C. If the matrix C was invertible, 
the above constraint would be satisfied trivially for alL+- 
rections of translation. However, when-2N > N + 1, CCt 
has rank at most N + 1, and therefore CL is not identically 
zero. 

Note that we are trying to  “adapt” the orthogonal com- 
plement of C,  which is highly structured as a function of 
8,4, until a given vector i is its null space. Heeger and 
Jepson [4] solve this problem by minimizing the two-norm 
of the above constraint using a extensive search over 8, 4, or 
a sampling of the sphere. This procedure does not exploit 
the geometric structure of the problem and is computation- 
ally expensive. Furthermore, it does not take into account 
the measurement noise, which enters into the minimization 
in a highly structured fashion. Temporal coherence of mo- 
tion is also not taken into account: at each step we want 
to exploit all the processing performed at  the previous time 
instant and update recursively the mdion estimates. 

In section 3 we rephrase the subspace constraints de- 
scribed in this section as a nonlinear and implicit dynamic 
model in exterior differential form [I]. Estimating motion 
corresponds to  the identification of such a model with the 
parameters living on a sphere: we propose a arincipled so- 
lution for performing the optimization task. The method 
outputs motion estimates together with theii reliability in 
the form of the second order statistics of the e stimation er- 
ror. Such an error may be used in subsequen i modules for 
estimating structure [13]. 

2.1. Recovery of ro ta t ion  and depth 

Once the direction of translation has been estimated, we 
may compute the rotational velocity and invei’se depth in a 
least-squares fashion from 

I f J =E+(i ,J)k.  

Note that, from the variance/covariance of tlie estimation 
error of the direction of translation e,+, we can charac- 
terize the second order statistics of the abwe  “pseudo- 
measurement” of the rotational velocity. We ioay therefore 
design a simple linear Kalman filter based up m the model 

where wW is the noise driving the random walk model, 
which is to  be intended as a tuning parameter, and nn 
is an error whose variance can be easily infeired from the 
variance of e, 4. 

Once the rotational and translational veloc ity have been 
recovered, they may be fed, together with the variance of 
their estimation error, into a recursive structure from mo- 
tion module which processes motion error, si.& as for ex- 
ample [lo, 131. 

2.2. Recovery of the mean distance 

Note that the inverse depth of each point and the direction 
of translation play interchangeable roles, as it is evident 
from the structure of the motion field (2). We inay therefore 
“pseudo-invert” the system (2) with respect t o  the direction 
of translation and the rotational velocity, and then perform 
a minimization similar to  (7) with respect t 3  the inverse 
depth of each point. Call Ci = [&Ai I Bi] , we have 
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Note that Ci depends on the depth of the point Z;, which 
we do not know. By substituting the above expression into 
eq. (2), we have an implicit constraint on Zi [4], which we 
may approximate by solving w.r.t. 2; the following opti- 
mization problem: 

Zi = urg min I I C ~ ~ I I .  (9) zi 

If C was invertible, again the above constraint would be 
satisfied trivially for all motions. However, when 2N > 3, 
CCt has rank at most three, and hence (I - CCt) # 0. 

In many applications it is of interest to estimate the 
average distance of an object from the camera (depth of 
the centroid). For this case, it is sufficient to consider the 
minimization in eq. (9) when Zi = 2, Vi;  2, is the distance 
of the centroid. 

3. SOLVING THE SUBSPACE OPTIMIZATION 

Let us define a A [e, 41'; xi are measured up to some error, 
y; ni E N(0, ki), which induces an error in 
the derivative: yi = ki + n:. Call x the column vector 
obtained by stacking the components of xi, similarly with 
2. Now define eL(x,  a) [I - 2 (E'E) zx E'] . Then the 

subspace constraint (6) may be written as EL(x,a)k = 0. 

x; + ni 

C~(x ,a ) jL=O V(a)  E s2 
yi A xi + ni V i  = 1  ... N 

represents a nonlinear implicit system of a particular class, 
called Exterior Differential Systems [l]. Solving for trans- 
lation is equivalent to identifying the above ezterior differ- 
ential system with parameters on a differentiable manifold 
(the sphere in this case) from the noisy data y. 

We have addressed this problem using a general frame- 
work presented in [12]. The solution is given by the simple 
iteration 

Prediction step 

Now { 

&(t + llt) = &(tit) &(OlO) = a0 { P(t+ lit) = P(tlt) + ROl(t) P(OI0) = Po 

Upda te  step 

&(t + l l t  + 1) = &(t + lit)+ 

P(t + llt + 1) = 
L(t + l)EL(y(t), a(t + 1lt))Y' 

r(t + i ) ~ ( t  + i I t ) rT( t  + IJ+ 
L(t  + l)D+(t)Rn(t + l)D+(t)L'(t + 1) 

where 

L(t + 1) = P(t + l l t)CT(t + l ) h t ( t  + 1) 
h(t + 1) = C(t + 1)P(t  + lIt)CT(t + 1)+ I +D+(t + l)Rn(t + l)DT(t + 1) 

the interested reader may find the detailed derivation in [12]. 

In order to be able to  assess the convergence of the above 
scheme, we must prove its observability/identifiability. When 
translated into the language of dynamic estimation, the 
analysis of Heeger and Jepson [6] can be intended as the 
observability analysis of our method; in particular it shows 
that the scheme converges under general position condi- 
tions. 

4. E X P E R I M E N T A L  ASSESSMENT 

We have experimented with the scheme on real and noisy 
synthetic image sequences. Instead of computing the pseudo- 
inverse of the variance of the innovation A, we lave ex- 
tended its rank by adding a small random matric, which 
takes into account the linearization error and prekents the 
filter from saturating. 

For the same data set used in [13], the scheme proves 
far more robust t o  the effect of measurement noise. Conver- 
gence is reached from arbitrary initial condition and noise 
in the image plane coordinates up to 8 pixel std for a field of 
view of approximately 40° (see figure 1). The scheme con- 
verges also with higher noise levels if properly init .alized. 

An estimate for more usual noise levels (one pixel std) 
is reported in figure 2. The least-squares estimates of ro- 
tational velocity are plotted in figure 3 (dashed lir es), and 
compared with the recursive estimates (solid line). 

The behavior of the filter in the presence of loca minima 
is described in the technical report CIT-CDS 94-006l. 

4.1. Experiments w i t h  real image Sequences 

We have tested the scheme on real image sequences: 
the noise level achieved by the most common feature track- 
ing/optical flow techniques is easily handled by the filter. 
As an example we report here the filter estimates for the 
rocket scene, for comparison with [ll]. Due to  the fact 
that the filter takes about 20 frames to converge, we have 
doubled the sequence and used one run as initial condition 
for the second run, which is displayed in image 6. 

5. CONCLUSIONS 

We have formulated a new recursive scheme for estimat- 
ing rigid motion under perspective via identifying a non- 
linear implicit dynamic model with parameters OIL a man- 
ifold. The motivation comes from the work of Hetger and 
Jepson [4], who propose to view motion estimatim as an 
optimization problem constrained to a subspace. 

Using results from nonlinear estimation and icientifica- 
tion theory, we formulate a motion estimator which is fast, 
computationally efficient, accurate and more robust than 
any recursive motion estimation scheme we have imple- 
mented. Extensive experiments have been perforined that 
highlight such features. 

lThis paper can be obtained via the Worldwide Net Mosaic 
(http://avalon.caltech.edu/cds/techreports/). 
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Figure 1: (Top) Estimates of the two components of the 
direction of translation. The noise in the image plane mea- 
surements had  8 pixel standard deviation. The initial con- 
ditions were zero for both components. The ground truth is 
in dotted lines (Bottom) Estimation error for the direction 
of translation. With noise of 8 pixel std in the data, the 
estimates are stili within 10 % of the true value. 
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Figure 2: Estimates and errors for the direction of trans- 
lation when the noise in the image plane ha: a standard 
deviation of 1 pixel. Note that convergence is i,eached from 
zero initial condition in about 10 steps. 
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Figure 3: Estimates for the components of rotational veloc- 
ity (top) and corresponding error (bottom). Ground truth 
is displayed in dotted lines; the filtered estimates are in 
solid lines. The least-squares computation of the rotational 
velocity is in dashed lines. 

Figure 4: Convergence to a shallow local minimum and then 
to the correct rigid motion. 

m 

Figure 5: fiajectory of the filter is superimposed to the 
average residual function (darker tones for larger residual, 
see figure 4). 
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Figure 6: (Top) Estimate of the direction of translation for 
the rocket scene. (Bottom) One image of the rocket scene. 

337 


