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ABSTRACT the full posterior probability density function. The de-
gree and type of warping is readUy controlled through

When dealing with W-posed inverse problems in data a judicious choice of the prior probability density func-
analysis, the Bayesian approach allows one to use prior tion on the transformation parameters.
information to guide the solution toward reasonable so- In this paper a different tact is employed. Rather
lutions. In this work the model consists of an object :_han try to warp a planar object to match the pro-
whose amplitude is constant inside a flexible boundary, jection data taken of a lumen, or blood vessel, the lu-
The flexibility of the boundary is controlled by through men is modeled in terms of its outer boundary. The

a distortion energy. We present an example of recon- default shape for the cross section of the vessel is as-
struction of the cross section of a blood vessel from just sumed te be a circle. Thus the circular border is given

two projections, a slight amount of rigidity and allowed to flex (or warp)
to match the data. Of course, the final choice of models

should only be made after a thorough evaluation based
1. INTRODUCTION

on significant clinical experience.

When very few projections are available, tomographic
reconstructions are usually vastly underdetermined, so 2. BAYESIAN FORMULATION

many solutions are possible. Bayesian methods of re-
construction can help identify the solution most sim- We represent the amplitudes of the N pixels of an image
ilar to the characteristics of the object being imeged by a vector f of length N. We are given M discrete mea-
that are known a prior/. The known properties of the surements that are linearly related to the amplitudes of

object are incorporated in terms of prior probability the original _ and Msmne that these measurements
are degraded by additive noise. The measurements candensity functions on the appropriate physical param-

eters. These methods can substantially improve the then be represented by the vector g - Hf + n, where n
accuracy of reconstructions obtained from very limited is the random noise vector, and H is the measurement
data when good geometrical information is employed matrix. In computed tomography the elements of the

in the model [1, 2]. jth row of H describe the weight of the contribution of
Previously we employed an approach in which the each image pixel to the jth projection mesmzrement.

model for the object being reconstructed is allowed to The Bayesian formulation is based on probabilities
alter its geometrical characteristics to accommodate that, because they are a function of continuous param-
the data by warping the coordinate system of the model eters, are actually probability densities, designated by
onto the coordinate system of the reconstruction. This a small p(). From Bayes' law, the negative logarithm

of the posterior probability density is given bygeometrical flexibility permits the reconstruction pro-
cedure to adapt the shape of the model to conform to
the measurements. Within the Bayesian framework, - log[p(flg)] - _b(f) ffi A(f) + II(f), (1)

the parameters needed to specify the coordinate trans- where the first term comes from the likelihood p(g[f)
formation are determined as part of the overall estima- and the second term from the prior probability p(f).

tion/reconstruction problem of fln_ the maximum of Assuming additive Gaussian noise with a known co-
variance matrix Rn, the negative Iog(likeFihood) is just

Suppo _edby the United States Departmentof Energyunder
contract numberW-7405-ESG-36, half of chi-squared: -log[p(g[f)] ffi A(f) ffi ½X2 =



½(s- Hf) Rn(s- Hr)
The second term II(f) comes from the prior proba-

bility density function. It should incorporate as much
as possible the known characteristics of the types of
objects under study. In the present context, the prior
information being incorporated consists of the geomet-
ric or morphological nature of the object being recon-
structed, to be discussed in the next section.

The reconstruction procedure typically involves find-
ing the image f that maximizes the posterior probabil-
ity, called the MAP solution, or minimizes _(f).

3. A FLEXIBLE BOUNDARY MODEL

We model the object being reconstructed in terms of its
boundary, which is assumed to be a closed curve. The
interior of this boundary is assumed to have a constant
amplitude, and the exterior amplitude is zero. The
curve is given in terms of its original arc length, s: z :
z(s) ; y ffi y(s). This boundary curve is considered Figure 1: Tomagraphic reconstructions based on two

orthogonal projections of an original simulated lumento be flexible and stretchable. Thus the model depends
only on the boundary, a curve in our 2D solution space, with a partial occlusion (upper-left). The result pro-
This model is different from the one explored previously vided by the MART algorithm (lower-left) is very poor.

[2], which involved a description that provided full 2D The MAP reconstruction (lower-right), based on a de-
versatility. Flexible 1D curves in a 2D space may be fault model (upper-right) with a flexible boundary de-
thought of as splines, manifolds in differential geometry fined by eight control points contacted with B-spline
[3], or 'snakes' [4]. curves, is much better.

The flexible curve may be interpreted in terms of

an analogous physical system, a closed loop of elas- density associated with bending is proportional to the
tic material that undergoes distortion while being con- square of the reciprocal of the radius of curvature Pc:
strained to lie in the plane. Then the constraints placed
on the curve correspond to the properties of the mate- Wbnd ffi ¢b,ndtC_ =Cbud (Z_//° -- Y°Z') _ , (3)
rial being distorted, such as its stiffness. For materials
obeying Hooke's law, the strain energy density, found where the primes indicate differentiation with respect
by integrating the stress with respect to the strain, is to mand Cbud is a constant. In some cases we may want
proportional to the square of the strain. The codii- to avoid the complete collapse of the border sad the
dents for bending and stretching are proportional to possible _ over of opposite sides of the object.
the corresponding effective elastic moduli of the flcti- This goal can be reached by adding another term to W
tious boundary material. The selection of these cod- that provides a modest repulsive potential between all
ficients should, of course, be made on the basis of the parts of the boundary.

prior clinical knowledge of the shapes of actual lumina
for the type of blood vessels under study. 4. EXAMPLE

We use a Gibbs' distribution for the prior probabU-

ity on the flexing of the curve, which is proportional to To demonstrate the proposed approach, we present a
exp(-W), where W is the total strain energy simple example of reconstruction from just two views.

Figure I shows the original scene consisting of a simu-

f lated lumen or blood vessel. The images in this exam-H(f) oc W -- (U)bend "l" Wstretch) d', (2) pie are all 32 x 32 pixek in size. Two noiseless parallel
projections of this object, one taken vertically and the

where the integral is over the arclength of the boundary other horizontally, are assumed to be available. The
s. The two energy density functions measure how much result of the Multiplicstive Algebraic Reconstruction
the curve is bent and stretched, respectively, relative Technique (MART) [5], which is known [6] to converge
to its initial default configuration. The strain energy to a maximum-entropy solution of the measurement



equations, is predictably very poor. Assuming that D. Hawkes, editors, In]o. Processing in Med./,nag.,
the object is known to be roughly circular and that pages 343-357. Springer-Verlag, 1991.
its amplitude is unity, the circle shown in the upper-

right (UR) panel is an appropriate default model. The [4] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
prior effectively consists of this model, together with a active contour models. Inter. J. Comp. Vision,
contribution to II based on the bending energy needed 1:321-331, 1988.

to deform the boundary from this shape. The result- [5] R. Gordon, R. Bender, and G. Herman. Algebraic
. ing MAP solution (LR) is much better that the MART reconstruction techniques for three-dimensional

reconstruction, electron microscopy and x-ray photography. J.
Theor. Biol., 29:471-481, 1970.

5. THE BAYES INFERENCE ENGINE
[6] A. Lent. A convergent algorithm for maximum en-

We are incorporating the previous ideas into an appli- tropy image restoration, with a medical x-ray ap-
cation that we call the Bayes' Inference Engine (BIE). plication. In R. Shaw, editor, Image Analgsis and

This application provides a convenient framework in Evaluation, pages 45-57. Soc. of Photog. Scien. and
which to deal directly with the geometry of objects, Eng., New York, 1977.
both in terms of flexible boundaries as shown here, and

flexible interiors, as in [2]. The application is designed [71 G. S. Cunningham, K. M. Hanson, G. IL Jennings,
to allow one to easily change the description of how Jr., and D. R. Wolf. An object-oriented implemen-
the measurements are modeled through a graphical- tation of a graphical-programming system. Medical

programming interface of the data-flow diagram [7]. Imaging: Image Proce_ing, ed. M.H. Loew, Pro¢.
The modular design of the BIE facilitates the caicu- SPIE, 2167:914-923, 1994.

lation of the derivatives of _b with respect to all the [8] G. S. Ctmningham, K. M. Hmmon, G. It J_ninn,
variables in the object model, which are needed to find Jr., and D. It Wolf. An object-oriented optimiza-

the minimum of _b[8]. Furthermore, a newly developed tion system (m theae proceedimja).
technique allows one to explore the reliability of the
MAP solution by means of hands-on manipulation of [9] K. M. Hanson, G. S. Cunningham, and D. R. Wolf.

the object model [9]. This technique is derived from The hard truch. In J. Skilling, editor, Mazimem
the suggestion in Sec. 3 of interpreting _ as a phyd- Entropy and Bayeaian Methods. Kluwer Academic,
cal potential, the derivatives of which represent forces. 1994 (to be published).
The accuracy of the MAP solution is probed by per-
turbing the relevant model parameters and determining
the force with which the solution pulk back.
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