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ABSTRACT 
In this paper we experiments with geometric algorithms 
for image smoothing. Examples are given for MRI and 
ATR data. The algorithms are based on the results 
in [2, 22, 25, 26, 291. Here we emphasize experiments 
with the affine invariant geometric smoother or affine 
heat equation, originally developed for binary shape 
smoothing, and found to be efficient for gray-level im- 
ages as well. Efficient numerical implementations of 
these flows give anisotropic diffusion processes which 
preserve edges. 

1. INTRODUCTION 

In this paper, we apply a geometric smoothing tech- 
nique based on invariant curve evolutions to MRI and 
ATR data. The theory of planar curve evolution has 
been considered in a variety of fields such as differential 
geometry [9, 11, 241, parabolic equations theory [4], nu- 
merical analysis [18], computer vision [13, 23, 251, vis- 
cosity solutions [6, 81, and image processing [2,3,  19, 26, 
291. One of the most important of such flows is derived 
when the planar curve deforms in the direction of the 
Euclidean normal, with speed equal t o  the Euclidean 
curvature. Formally, let C(p,  t) : S’ x [0, T) -+ R’ be a 
family of smooth embedded curves in the plane (bound- 
aries of planar shapes), where p E S1 parametrizes the 
curve, and t E [ O , T )  parametrizes the family. Assume 
that this family of curves evolves according to the evo- 
lution equation 
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where v ( p )  is the Euclidean arc-length, n the Euclidean 
cumature, and d the inward unit normal [12]. Gage 
and Hamilton [9] proved that a simple and smooth 
convex curve evolving according to  (I), converges to 
a round point. Grayson [ll] proved that an embedded 
planar curve converges to a simple convex one when 
evolving according to (1). The flow (l), is denoted as 
the Euclidean geometric heat pow. It has been used for 
the definition of a geometric, Euclidean invariant, mul- 
tiscale representation of planar shapes [l,  131. As we 
will show below, this flow is also important for image 
enhancement applications. Note than in contrast with 
the classical heat flow, the Euclidean geometric heat 
flow is intrinsic to the curve, that  is, only depends on 
the geometry of the curve and not on its parametriza- 
tion. This flow, as well as the other presented below, 
can be used also to solve the common shrinking prob- 
lem of smoothing processes [28]. 

Recently, we introduced a new curve evolution equa- 
tion, the afine geometric heat flow [24]: 

where s is the afine arc-length, i.e., the simplest affine 
invariant parametrization [12, 241. This evolution is the 
affine analog of equation (l), and admits affine invari- 
ant solutions, i.e., if a family C(p,  t) of curves is a solu- 
tion of (2), the family obtained from it via an unimod- 
ular affine mapping, is a solution as well. We proved 
that any simple and smooth convex curve evolving ac- 
cording to  (2), converges to an ellipse [24]. Since the 
affine normal C,, exists just for non-inflection points, 
we presented the natural extension of the flow (3) for 
non-convex initial curves in [27]: 

(3) 
p inflection point, acO at = { $,,(p,  t ) ,  p non-inflection point. 

In this case, we proved (see also [5]) that the curve 
first becomes convex, as in the Euclidean case, and af- 
ter that it converges into an ellipse according to the re- 
sults of [24]. The flow (3) defines a geometric, affine in- 
variant, multiscale representation of planar shapes [25]. 
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In [25] we proved that the flow holds all the required 
properties of scale-spaces, as for example causality and 
order preserving. See the mentioned reference for pla- 
nar shapes smoothing examples. 

We should also add that in [27], we give a general 
method for writing down invariant flows with respect 
to any Lie group action on R2. This was formalized, 
together with uniqueness results, in [15], and extended 
to surfaces in [16]. 

Recently, algorithms for image smoothing were de- 
veloped based on the Euclidean shortening flow (1) and 
related equations. In this paper we experiment with 
the affine flow. This point is motivated by the fact 
that the implementation of the Euclidean-type version 
of (3) seems to be more stable than the original Eu- 
clidean flow (see Section 3 and 125, 291). 

2. EUCLIDEAN IMAGE PROCESSING 

In this section, we present algorithms for image pro- 
cessing which are related to the Euclidean shortening 
flow (1). In general, 90 : R x R -+ R represents a gray- 
level image, where 90(c ,  y) is the gray-level value. The 
algorithms that we describe are based on the formu- 
lation of partial differential equations, with 9 0  as ini- 
tial condition. The solution 9 ( c ,  y, t) of the differential 
equation gives the processed image. 

Rudin e l  al. [22] presented an algorithm for noise 
removal, based on the minimization of the total first 
variation of 9. The minimization is performed under 
certain constraints and boundary conditions. Note that 
IC, the Euclidean curvature of the level sets, is exactly 
the Euler-Lagrange derivative of this total variation. 
In [30] we investigate an stochastic approach for the 
efficient computation of the Lagrange multiplier for this 
variational problem. 

Alvarez et  al. [2] proposed an algorithm for image 
selective smoothing and edge detection. In this case, 
the image evolves according to 

where G is a smoothing kernel, and g ( r )  is a nonin- 
creasing function which tends to  zero as T 4 00. The 
terms of equation (4) have the following natural inter- 
pretation [2]. First the expression 1 1  V9 11 div (&) , 
is equal to act, where ( is the direction normal to  
V9. Thus it diffuses 9 in the direction orthogonal 
to  the gradient V9, and does not diffuse in the di- 
rection of V9. It can be shown that the evolution 
9: = 1 1  V@ 1 1  div (&) is identical to  

1 
9* = ~ ( @ ~ @ z z - 2 ~ z ~ y ~ z y + ~ ~ ~ y y )  = n II V@ II, 

9; + 9; 
(5) 

which implies that the level sets of 9 move according 
to  the Euclidean shortening flow given by equation (1) 
[2, 181. For general results concerning the evolution of 
level sets, see [6, 8, 181. 

Next the term g(11 G * V9 1 1 )  is used for the en- 
hancement of the edges. If IIV9II is “small”, then the 
diffusion is strong. If IIV9II is “large” at  a certain point 
(c, y), this point is considered as an edge point, and the 
diffusion is weak. 

Consequently, equation (4) gives an anisotropic dif- 
fusion, extending the ideas first proposed by Perona 
and Malik [20]. The equation looks like the level sets 
of 9 are moving according to  (l) ,  with the velocity 
value “altered” by the function g ( . ) .  Other approaches 
for anisotropic diffusion, derived from variations of [20] 
as well, can be found in [ lo ,  211. 

combines the shock filter [19] with the anisotropic diffu- 
sion (4). Actually, in their experiments, they used the 
directional smoothing operator proposed in [2] (equa- 
tion (4)), but others, such as the one proposed in Sec- 
tion 3 below, can be used as well. 

Note that in the image enhancement algorithm given 
in [22] the steady state solution of the evolution gives 
the enhanced image, while in the algorithm given by 
(4) a stopping condition must be added. Possible au- 
tomatic stopping conditions can be the achievement of 
a certain difference between the original image and the 
processed one, achievement of certain smoothness level, 
etc. 

Alvarez and Mazorra [3] proposed an algorithm which 

3. AFFINE SMOOTHING 

As we saw in previous section, there is a close rela- 
tionship between the curve evolution flow (l), and re- 
cently developed image enhancement and smoothing 
algorithms (see equation (5)). In this section, we ex- 
plain why we propose the use of the affine shortening 
flow (3) instead of the Euclidean one. 

It is well-known in the theory of curve evolution, 
that if the velocity v’ of the evolution is a geometric 
function of the curve, then the geometric behavior of 
the curve is affected only by the normal component 
of this velocity, i.e., by < v’,d > . The tangential 
velocity component only affects the parametrization of 
the evolving curve [7, 251. Therefore, instead of looking 
at (3), we can consider a Euclidean-type formulation of 
it. In [24], we proved that < C , , , J  >= n 1 f 3 d .  Since 
IC = 0 at inflection points, and the inflection points are 
affine invariant, we obtain that the evolution given by 

c: = IC’f3Ji7, 

is geometric equivalent to the affine shortening flow (3). 
Then the trace (or image) of the solution to  (6) is affine 
invariant. 
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It is interesting to note that the affine invariant 
property of (6) was also pointed out by Alvarez et al. 
[l], based on a completely different approach. For ex- 
istence of the Euclidean and affine heat flow in the vis- 
cosity framework, see [l, 6, 81. The existence of the 
Euclidean and affine geometric heat flows for Lipschitz 
functions is obtained from the results in [4, 51 as well. 

The process of embedding a curve in a 3D surface, 
and looking a t  the evolution of the level sets, is fre- 
quently used for the digital implementation of curve 
evolution flows [18]. Let us consider now what occurs 
when the level sets of @ evolve according to  (6). I t  is 
easy to show that the corresponding evolution equation 
for @ is given by 

This equation was used in [25] for the implementa- 
tion of the novel affine invariant scale-space for planar 
curves mentioned in the Introduction. If we compare 
(5) with (7), we observe that the denominator is elim- 
inated. This not only makes the evolution (6) affine 
invariant [I, 251, it also can make the numerical im- 
plementation more stable [18]. This is the main reason 
why we proposed in [26] to research the use of the affine 
shortening flow in the place of the Euclidean one for the 
algorithms presented in the previous section. 

4. EXPERIMENTAL RESULTS 

Before presenting our simulation results, we should point 
out that recently Niessen et al. [14] compared exper- 
imentally the classical Gaussian filtering with the Eu- 
clidean heat flow (5) and the affine one (7), obtaining 
the best results for (7) as expected. We now present 
results for (7) with functions g different for the unity 
(in contrast with the experiments in [14]). The selec- 
tion of g # 1 will better preserve edges, since points 
with high gradient will move with less velocity. 

In Figure 1, we present several steps of the affine 
based image smoothing (equation (7) with g = 1/r as 
in (4)). Note the preservation of salient edges. In- 
stead of using Gaussian filtering for smoothing the im- 
age before the gradient computation for g in (4), the 
flow (7) itself can be used, obtaining a completely ge- 
ometric flow. If we are interested in obtaining a com- 
pletely affine invariant image smoothing process (the 
Euclidean gradient is not affine invariant), the “affine 
gradient” proposed in [17] can be used for the compu- 
tation of g in (4). 

In Figure 2 we show the results of the affine based 
smoother for ATR data. The original image is pre- 
sented first, then the degraded one, and two steps of 
the algorithm follow. 

5. CONCLUDING REMARKS 

The importance of the Euclidean shortening flow for 
image smoothing and edge detection has been amply 
demonstrated by the works of Alvarez et al. [I, 2 ,  31, 
and by Osher and Rudin [19, 221. We have developed 
the affine analogue of the Euclidean flow in [24, 25, 
271, and have shown that the numerical implementation 
of this flow can be more stable. Further, in [26] we 
proposed to replace the Euclidean flow by this novel 
affine one for image enhancement as well. 

In this work we used the affine based flows for en- 
hancement of MRI and ATR data. More examples on 
MRI, as well as details on the algorithms, can be found 
in [29]. We tested the anisotropic diffusion based on 
the affine heat flow. In this case a stopping condition 
should be added to the algorithm. Note than since the 
right hand of the affine flow (7) (i.e., 1 1  V@ 1 1 )  is 
a potential function, it is the Euler-Lagrange of a vari- 
ational problem. Therefore, adding constraints as in 
[22], the algorithm can made to stop automatically as 
well. 

As demonstrated by the examples presented here, 
salient edges are preserved during the proposed smooth- 
ing processes. These algorithms can also be combined 
in different ways with segmentation algorithms, in or- 
der to perform local geometric smoothing or to improve 
the segmentation itself. 
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