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ABSTRACT 

Anisotropic diffusion is posed as a process of minimiz- 
ing an energy function. Its global convergence behavior 
is determined by the shape of the energy surface, and 
its local behavior is described by an orthogonal decom- 
position with the decomposition coefficients being the 
eigenvalues of the local energy function. A sufficient 
condition for its convergence to a global minimum is 
given and is identified to be the same as the condi- 
tion previously proposed for the well-posedness of 1- 
D diffusions. Some behavior conjectures are made for 
anisotropic diffusions not satisfying the sufficient condi- 
tion. Finally, some well-behaved anisotropic diffusions 
are proposed and simulation results are shown. 

1. INTRODUCTION 

In an anisotropic diffusion, an image f defined in a do- 
main S Z ,  is allowed to evolve over time via the following 
partial differential equation [6] 

The diffusion coefficient c(ll0fll) E [0,1] is required 
to be a decreasing function of the magnitude of local 
gradient such that (1) diffuses more in regions of small 
gradients and less around edges where the gradients are 
large. Let 

4(s)  = 4 s )  (2) 

be the flux function widely used in l-D diffusion equa- 
tions. It has been shown that the desirable c(s) should 
be such that the flux function has the following thresh- 
olding property [6] 

> 0 ,  s < T  
otherwise ’ (3) 
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where T is the threshold. The motivation is that (1) 
will diffuse forward (smoothing) in smooth regions and 
backward (sharpening) around edges. Two such c(s)’s 
have been proposed [6]: 

(4) 

and 

(5) 
1 

C(S) = 
1 + ( S / K ) 2  , 

where K is a constant which controls the threshold T .  
have been 

shown to be ill-posed processes in the sense that im- 
ages close to each other are likely to diverge during the 
diffusion process. For example, the presence of noise, 
especially when the gradient generated by noise is com- 
parable to that by image features, can drive the diffu- 
sion process to undesirable results [6,  91. Even without 
noise, ”stair-casing” effects can arise around smooth 
edges [9]. In practical implementation on computer, 
the diffusion process may diverge depending on differ- 
ence schemes and grid sizes [5]. 

A sufficient and necessary condition for l-D diffu- 
sions to be well-posed has been given [2, 11 : 

However, these anisotropic diffusions 

+’(4 2 0, ( 6 )  

which indicates that l-D diffusions with their diffu- 
sion coefficients satisfying the thresholding property 
(3),  such as (4) and (5), are ill-posed. Some arguments 
about the well-posedness of 2-D diffusions are made 
based on this condition, but no proof has previously 
appeared in the literature. 

The ill-posedness of anisotropic diffusion is allevi- 
ated via introducing a smoothing operation to the vari- 
able of diffusion coefficient c(s). One such example is 

- af = div(c(llVG(s) * f1l)V.f). 
at (7) 

where G(s) * f denotes a convolution of the image at  
time t with a Gaussian kernel of scale s, which is to 
be given a priori. A properly selected s is critical to 
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the success of the proposed anisotropic diffusion in the 
sense that the diffusion process would not be stable 
for too small an s, while image features are smeared 
for too large an s. One possible solution is to use a 
large s initially to suppress noise and then to  reduce 
s so that image features are not further smeared [9]. 
Nevertheless, optimum selection of such an s is still 
an open problem. The convolution load involved in 
G(s) * f is a serious problem because it is required at  
each time instant, whether it is implemented directly or 
by a separate isotropic diffusion. We also note that this 
peculiar scheme of isotropic diffusion within anisotropic 
diffusion is obviously against the spirit of anisotropic 
diffusion. 

An alternative is to use curve evolution which is 
based on geometric heat flow of the level sets of the 
image. Diffusion schemes proposed include curvature 
iiiotion [4], reaction-diffusion [3], and affine invariant 
scale-space [7]. 

This paper will pose anisotropic diffusion as a pro- 
cess of minimizing an energy function. The behaviors 
of anisotropic diffusion can then be best understood 
and described by the shape of the surface of the en- 
ergy function, and well-behaved anisotropic diffusion 
can then be derived based on this analysis. 

2. ANALYSIS 

In order to understand the behaviors of the anisotropic 
diffusion (l), let us minimize the following energy func- 
tion 

E(f) = J ,  N l V f  ll)dO = J ,  q / m ) d Q .  (8) 

The F(llVfll) is required to be a strictly increasing 
function of the magnitude of gradient, such that 

Consequently, the energy function (8) is a measure 
of smoothness and its minimization is equivalent to 
smoothing. 

The the minima of (8) are a t  some of its stationary 
points given by the Euler-Lagrange equation [8] 

Similar t o  gradient descent, (10) may be solved by the 
following parabolic equation 

when t -+ ca. Obviously, equation (11) is the same as 
the anisotropic diffusion equation (1) if the diffusion 
coefficient is set to 

As required of a diffusion coefficient, it  is positive due 
to  (9). It is also obvious that the flux function used for 
1-D diffusion is 

f#J(s) = sc(s) = F’(s). (13) 

For an interpretation of the anisotropic diffusion, let 
us first note that the eigenvalues of the Hessian matrix 
of F(llVfll), the integrand of (8), may be obtained as 

XI = qgy, A2 = F”(llVfll> . (14) 

Note that XI = c by (12). We can then expand equa- 
tion (1 1) into 

(15) - af = XIDO + AzD,, at 
where 

Do = fifYY - 2fzfyfzy + f t f zz  , 
(16) f2 + f; 

and 
D, = f 2 f z z  + 2fzfyfzy + firyy , 

(17) f,” + f; 
are the second order directional derivatives o f f  in di- 
rections orthogonal and parallel t o  the local gradient, 
respectively. Since the two second-order directional 
derivatives are in orthogonal directions, equation (15) 
represents an orthogonal decomposition of anisotropic 
diffusion, weighted by the eigenvalues. 

Since the diffusion coefficient is nonnegative due to 
(9), the first term of (15) represents a degenerate for- 
ward diffusion in the direction orthogonal to the gradi- 
ent, which tends to preserve edges since an edge is also 
orthogonal to the gradient. In addition, this directional 
smoothing can be encouraged within smooth regions 
and discouraged near edges if the diffusion coefficient 
is set to be a decreasing function of the magnitude of 
the gradient. 

The second term of (15) represents a degenerate 
diffusion in the direction of the local gradient. I t  is for- 
ward (smoothing) if A2 > 0, and backward (sharpen- 
ing) otherwise. In order to sharpen edges while smooth- 
ing small variations in intensity, it  is desirable to have 
an F(llVfll) such that 
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where T is again a threshold. Since 

F”(llVfll) = +’(llVfll)l (19) 

equation (18) is actually the same as (3) except that it 
is obtained in a 2-D context. 

With the above results in mind, let us now address 
the problem of ill-posedness of the anisotropic diffusion. 
The evolution of (11) can be interpreted as a descent 
process on the surface of the energy function (8), so 
its behavior is dependent on the shape of this energy 
surface and the initial conditions where it starts. If 
the energy surface has a single global minimum, the 
diffusion process will converge to that minimum start- 
ing from any image. The anisotropic diffusion is then 
well-posed. However, if the energy surface is rough and 
has many local minima, the diffusion process, starting 
from images close to  each other, is likely to be caught in 
different local minima. The anisotropic diffusion may 
then be interpreted as ill-posed because images close to 
each other may diverge during diffusion process. 

The energy surface of (8) is determined by its inte- 
grand when the image domain R is given. If the inte- 
grand is convex, then (8) is convex [8]. Consequently, 
the anisotropic diffusion (l l) ,start ing from any image, 
converges to the global minimum. This global mini- 
mum might correspond to many images continuously 
connected to each other and having the same degree of 
smoothness as measured by (8). The convexity of the 
integrand of (8) is guaranteed if 

A1 2 0 and A2 2 0 f o r  all IlVfll . (20) 

Since A1 2 0 is always true for all llVfll due to (9), 
then the energy function (8) is convex if 

A2 = F”(llVfll) 2 0 for all IlVfll. (21) 

Consequently, anisotropic diffusion (1 l) ,  starting from 
any initial image, always converges to the global min- 
imum. Note that (21) is exactly the same as (6) due 
to (13), but it is only a sufficient condition for 2-D 
diffusions. 

Other cases of A 2  would lead to complicated energy 
surfaces. A still rather simple case is 

A2 = F”(llVfll) I 0 for all IlVfll. (22) 

Then the integrand of (8) has a unique saddle point. 
It seems likely that the integration of it over the do- 
main R also has a unique saddle point. Consequently, 
anisotropic diffusion has no local minima to converge 
to, instead, it converges to a boundary point on either 
side of the saddle depending on its initial position on 
the saddle. Images that are close to each other will stay 

close during the diffusion process as long as they are 
not distributed across the saddle ridge. The anisotropic 
diffusion may again be regarded as well-posed. Simu- 
lations on computers tend to confirm this. 

When eigenvalue A2 satisfies the thresholding prop- 
erty (18), as the flux function (2) has been proposed 
to satisfy by Perona and Malik [6], the integrand of (8) 
is likely to have many local minima so that the energy 
function (8) would be more complicated with many lo- 
cal minima, Consequently, images close to each other 
are likely to diverge during the diffusion process and 
fall in different local minima. The anisotropic diffusion 
is thus ill-posed. Surprisingly, the idea of threshold- 
ing must be abandoned if anisotropic diffusion is to be 
well-posed. 

3. DESIGN 

The first type of anisotropic diffusion schemes are those 
which satisfy the condition (21). Their energy surfaces 
are convex, and their convergence is guaranteed. How- 
ever, since A2 > 0 corresponds to a forward diffusion 
(smoothing) in the gradient direction, if we do not set 
A2 = 0, it will induce smoothing across image edges. 
Setting A 2  = 0, we have 

This corresponds to the anisotropic diffusion that rep- 
resents a good trade-off between well-posedness and 
performance, that is, it always converges to the same 
global minimum from any initial image and it smoothes 
images only in directions along image edges. 

The second type of anisotropic diffusions include 
those satisfying (22).  An important advantage of this 
type is that it has a backward diffusion in the gradient 
direction, hence tends to give sharper image edges. But 
they only have saddle-point type of convergence behav- 
ior. One example from this type may be obtained by 
extending (23) to 

Other schemes in this type may be developed. 

4. NUMERICAL SIMULATIONS 

The original image in Figure l (a)  is degraded to gen- 
erate Figure l(b) by adding white Gaussian noise at  
SNR=10 dB, where SNR is defined by 

(25) 
Variance of image 
Variance of noise ’ 

S N R  = 

The degraded image in Figure l(b) is then used as ini- 
tial conditions for anisotropic diffusion. 
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Figure 1: (a) Original cameraman image and (b) image 
degraded by white Gaussian noise at  a SNR = 10 dB. 

Figure 2(a), (b), and (c) are the scale-space images 
obtained using diffusion coefficient given by (4) with 
Ii‘ = 100. It is obvious that noise is not removed. 
Figure 2(d), (e), and (f) shows the scale-space images 
obtained using (24) with n = $ (the corresponding 
diffusion coefficient c(s) = $ s - ~ / ~ ) .  Noise is removed 
while edges are preserved. 

5. CONCLUSION 

Anisotropic diffusion is posed as a process of minimiz- 
ing an energy function. Its global convergence behavior 
is determined by the shape of the energy surface, and 
its local behavior is described by an orthogonal decom- 
position with the decomposition coefficients being the 
eigenvalues of the local energy function. Consequently, 
the behavior analysis of anisotropic diffusion may be 
based on the eigenvalues of the Hessian matrix of the 

local energy function. A sufficient condition for its con- 
vergence to a global minimum is given and is identified 
to  be the same as the condition previously proposed 
for the well-posedness of 1-D diffusions. The best dif- 
fusion scheme satisfying this sufficient condition is ob- 
tained. Other type of diffusion schemes which satisfy 
saddle-point type of well-posedness conditions are also 
proposed and are shown to be stable by simulation, but 
a strict analysis of well-posedness is not available. This 
constitutes one of our future tasks. 
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Figure 2: Scale spaces of Anisotropic Diffusion. Diffusion coefficient c(s) = exp-(’/’)’ for images in the left 
column.(a) t=5, (b) t=45, and (c) t=150. Diffusion coefficient c(s) = $s-4/3 for images in the right column, (d) 
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