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ABSTRACT

We consider a general weighted least squares approximation

problem with a membrane spline regularization term. The key

parameters in this formulation are the weighting factors which

provide the possibility of a spatial adaptation.  We prove that the

corresponding space-varying variational problem is well posed,

and propose a novel multigrid computational solution.  This

multiresolution relaxation scheme uses three image pyramids

(input data, weights, and current solution) and allows for a very

efficient computation with an effective O(N) complexity, where

N is the number of pixels.  This general multigrid solver can be

useful for a variety of image processing tasks.  In particular, we

propose new multigrid solutions for noise reduction in images

(adaptive smoothing spline), interpolation/reconstruction of

missing image data, and image segmentation using an adaptive

extension of the K-means clustering algorithm.

1. INTRODUCTION

Variational methods and the use of optimization principles in

general provide attractive tools for deriving many image

processing algorithms [1, 2].  The main idea is to convert the

initial task into an energy (or functional) minimization problem,

which presents certain conceptual advantages.  Typical energy

functions include two components : a data term that forces the

solution to be consistent with the available measurements, and a

regularization term that imposes some smoothness on the

solution.  The second term is especially important for obtaining

a problem that is not ill-posed mathematically [3].   In a

Bayesian framework, it is determined by our a priori knowledge

of the solution [4].

Unfortunately, even in the simplest case of quadratic

energy functions (linear solution), the minimization of these

functionals tends to be computationally quite demanding.  The

matrices involved are too large to be handled directly, and the

solutions are computed iteratively using standard numerical

methods (e.g., Jacobi,  SOR, Conjugate gradient).  These

methods typically require a large number of iterations, which

limits their applicability even though convergence is usually

guaranteed.  One important exception is the space-invariant case

where the solution can be determined directly by digital filtering

using the FFT (O N N( log )) [5].  Recursive filtering solutions

(O N( ) ) have also been proposed for the simplest forms of

energies [6].

As a rule, we can gain in computational efficiency only if

we take advantage of certain special features of the problem at

hand, e.g., space-invariance.  Of special interest is the case

when the functional involves simple differential operators so that

the solution can be specified by a partial differential equation, as

is often the case in computer vision [7].  This type of problem

can be solved very efficiently by using some of the recent

multigrid relaxation schemes developed in applied mathematics

[8, 9].  Terzopoulos has demonstrated the usefulness of this

approach in a variety of low level computer vision problems:

visual surface reconstruction, lightness, shape-from-shading,

and optical flow [10, 11].

Our intent in this paper is to show that the multigrid

methodology can also be beneficial for some of the more

traditional image processing tasks (interpolation, noise

reduction, and segmentation).  The key motivation is to move

away from the standard space-invariant type of processing,

without necessarily having to suffer from a corresponding

increase in computational complexity.  We are also interested in

the variational approach because of its generality and its

conceptual appeal, namely, the fact that the design process boils

down to the specification of an energy functional that is

appropriate for the application at hand.

For this purpose, we will consider the problem of the

minimization of a general criterion of the form :
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where f is the input image, u is the desired solution, and w≥0 is

a map of space-varying weights; dx   and dy  are the horizontal



and vertical first difference convolution operators, respectively.

The second space-invariant term in (1) is a membrane spline

regularizer; the amount of smoothness is controlled by the

parameter λ.  The versatility of the criterion comes from the fact

that the weights w can vary adaptively over the image; they may,

for example, represent a mask that emphasizes certain regions

(or points) of interest.  In Section 2, we will first show that the

problem is well posed mathematically.  We will then describe

our multigrid computational solution.  In Section 3, we will be

more specific and show how various image processing tasks can

be cast into this general framework. We will propose several

examples of  multigrid adaptive image processing, most of

which we believe are original.

2. GENERAL FORMULATION

2.1 Mathematical analysis

By taking the partial derivative of (1) with respect to u, we

find that u is the solution of the difference equation

f k l w k l u k l L u k lw( , ) ( , ) ( , ) ( , )= ⋅ + ⋅ ∗λ , (2)

where f k l w k l f k lw( , ) ( , ) ( , )= ⋅  and where L d d d dx
T

x y
T

y= ∗ + ∗
is the discrete Laplacian operator.  Note that the homogenous

part of this equation is similar to Helmholtz's reduced wave

equation k u Lu2 0+ = , except for the weighting factor that is

space-varying.  The equivalent form of (2) in matrix notation is

f Wu Lu Auw = + =λ (3)

where W is the diagonal weight matrix, f Wfw =  the weighted

data vector, and A W L= + λ  a symmetrical positive definite

matrix.  The positivity constraint on W and the special form of

the regularization functional L guarantees that A is strictly

diagonal dominant, and therefore non-singular.  This condition

insures that our minimization problem is well posed, and that it

has a unique solution :

u A f= −1
w . (4)

The corresponding minimum value of the energy criterion is

min ( ) ( ) ( )
v

v u f Wf f Wu f f uE E T T
w
T= = − = − . (5)

2.2 Multigrid Implementation

Even if the problem is well posed mathematically, the size

of the matrices is such that the linear system of equations (3)

cannot be inverted directly.  To derive an efficient numerical

procedure, we take advantage of the fact that (2) is scalable and

therefore suitable for multigrid processing.  For this purpose,

we define three image pyramids : one for the forcing term fw or

the current residual r f wu L uw= − + ∗λ ,  one for the spatial

weights w, and one for the computation of the solution u.  The

w pyramid is specific to our formulation and is generated during

the initialization phase by successive filtering and decimation by

a factor of two in each direction (restriction or DOWN

operation) .  The two other pyramids u and r are computed and

updated during the course of iteration : the current solution

update u may either be interpolated to the next finer level by

upsampling and filtering (UP operation), or its residual r

projected onto the next coarser level using the DOWN operation.

In either case, we used piecewise linear filters (first degree

splines) which are consistent with the order of the differential

operator.  It is important to note that the basic idea of multigrid

processing is to iterate on a residual system of equations, which

provides the appropriate solution update, rather than on the

original system itself [9].  At the ith level of the pyramid where

the sampling step is h i= 2 , the rescaled version of the equation

that needs to be solved is

r w u h L uh h h h( ) ( ) ( ) ( )( )= + ∗−2λ , (5)

where the superscript h refers to the data representations at that

particular resolution, and where the factor h−2 provides the

proper scale normalization for the 2nd order differential

operator.  Instead of solving (3) directly, we use a standard

multigrid iteration strategy [8, 9].  Specifically, we apply n1

iterations of the dampened Jacobi method, which is good for

getting the high frequency part of the solution and is also

guaranteed to converge in our particular case.  The residual is

then projected onto the next coarser level and the process is

iterated. At the bottom of the pyramid, the equation is solved

within the required level of precision.  This coarse part of the

solution is then interpolated and used to update the intermediate

finer step solutions, with n2 additional Jacobi iterations per

level.

For most cases that we tested, we found that the equation

could be solved within an acceptable error tolerance with only

one full multigrid V-cycle with n1 1=  and n2 2= .   Since the

single-scale version of the Jacobi algorithm typically requires

hundreds of iterations, the present approach provides orders of

magnitude speed improvement (one full multigrid V-cycle is

comparable in complexity to 2 21 2n n+  fine-grid iterations).  In

essence, we have an O N( )  algorithm that is extremely

competitive.

3. IMAGE PROCESSING EXAMPLES

Now that we have a general multigrid solver of (2) at our

disposal, we will look at some specific examples.

3.1 Smoothing spline filter

By setting w=1 over the whole image, we get the

equivalent of a non-separable smoothing spline filter [6, 12].



The corresponding space-invariant operator can be characterized

by its 2D transfer function

 H z z
z z z z

( , )
( )1 2

1 1
1

2 2
1

1
1 2 2

=
+ − + − − + −− −λ

. (6)

This is an exponential filter with a response that is

approximately isotropic.  The amount of smoothing is directly

controlled by the parameter λ.  Specifically, we can show that

the filter's equivalent window size (standard deviation) is

σ λλ = 2 , (7)

a relation that gives us a quantitative understanding of the

smoothing effect of λ .  Depending on the application, the

optimal regularization parameter may also be determined from

the data using cross-validation methods [13], or from a given

measurement model (signal + noise) [14].  For the case in which

the image (f=s+n) is corrupted by additive white noise with a

known variance σ2, we have derived a simple quasi-Wiener rule

for the selection of the optimum regularization parameter

λ σ
σ

=
⋅ −

2

24√{ }E f Lf
, (8)

where √{ }E f Lf⋅  denotes an estimate of the correlation between

the noisy image data and its Laplacian as defined in (2).  For the

images that we have considered so far, this simple rule works as

well as cross-validation, and is certainly much less time

consuming.

An interesting extension is to use space-varying

regularization factors λ( , )k l  that are adjusted locally using

signal statistics evaluated over a sliding window [14].  Note that

this adaptive formulation also fits into the present framework:

the spatial weights in (2) are simply w k l k l( , ) / ( , )= λ λ0 , with

the constraint that λ( , )k l > 0.  We are currently considering this

approach for designing an adaptive Wiener filter for additive

white noise which may be useful for processing noisy electron

micrographs.

In our current implementation, such a smoothing spline

filtering of a 256×256 image (one full multigrid V-cycle) is

approximately twice as fast as a comparable Fourier domain

filtering with a proper handling of boundary conditions

(512×512 FFTs). In addition, our algorithm works for the

space-variant case as well, and its computational efficiency is

unaffected.

3.2 Interpolation and image reconstruction

Equation (1) is also suitable for surface reconstruction and

extrapolation.  In this case, the weights are set to zero where no

data is available and one otherwise.  The value of λ then

determines the tightness of the fit at the data points, while the

surface is extrapolated such that its Laplacian is zero elsewhere.

Fig. 1 presents an example of the reconstruction of an image

from the values of its contour points only.  In this example, the

edge points were selected by simple thresholding of the image

gradient.  We believe that this type of edge-based image

representation can be further improved by using a detection

method that is more directly related to the reconstruction

algorithm, and also by closing some of the contour lines to

avoid blending artifacts.

We have also used the same reconstruction technique to

interpolate non-uniformly and sparsely sampled data points,

with very satisfactory results.

Fig. 1 : (a) Initial 256×256 image, (b) Edge map: non-edge points are
simply set to zero, (c) reconstructed image using the proposed algorithm.
Non-edge points are extrapolated such that their Laplacian is zero.

3.3 Adaptive K-means image segmentation

The last application that we present is an adaptive K-means

segmentation algorithm similar to the method described by

Pappas [15].  The essential difference with this earlier work is

that we use a membrane model to specify the smoothness of the

means over the regions rather then a sliding window approach.

The advantage is mostly conceptual because the model is now

entirely specified through a single Gibbs energy function.

Assuming that there are K image regions   R R RK1 2, , ,L  with

slowly varying means    u u uK1 2, , ,L , we want to find the

partition that minimizes
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The solution is determined iteratively by successively optimizing

over   R R RK1 2, , ,L  keeping the ui 's fixed (nearest neighbor rule),

and then over   u u uK1 2, , ,L  keeping the Ri 's fixed.  The second

step is solved using the algorithm described above over each

region with w k li ( , ) =1 when ( , )k l Ri∈  and w k li ( , ) = 0

otherwise.  Note that with this formulation the mean signals are

defined everywhere.  We observe that this procedure is

equivalent to the standard K-means clustering when the λ i 's are

sufficiently large, in which case ui  converges to a constant: the

mean value over the corresponding region.  Typically, we use

the standard K-means segmentation to provide a starting point

for the algorithm.

An example of adaptive image segmentation is shown in

Fig. 2d, next to the conventional K-means solution in Fig. 2b.

The adaptive scheme does a better job in preserving the local

image details which are important for the interpretation.  The

corresponding slowly-varying region model is displayed in Fig.

2c.

The algorithm can also be made robust with respect to

noise by including an additional Gibbs spatial interaction term in

the energy (clique potentials), as described in [15].  The

additional clique parameters will essentially provide a controlling

mechanism for the removal of isolated points.  This can be

achieved by a simple modification of the region assignment part

of the algorithm, using the iterated conditional modes approach

proposed by Besag [16].

4. CONCLUSION

Our objective was to demonstrate some of the potential uses and

advantages of multigrid methods for image processing. For this

purpose, we started by developing a multigrid solver for a

space-varying form of Helmholtz's equation.  Our primary

motivation was to investigate the possibility of local adaptation

in the solution of regularization problems, and to move away

from the standard space-invariant type of processing. This

approach turned out to be quite fruitful.  Our preliminary results

suggest that the proposed methodology should be useful for a

variety of image processing problems.

The multigrid algorithm that we propose here is

computationally very efficient.  For all practical purposes, it is

an O(N) method where N is the number of pixels in the image.

In fact, in the space-invariant case, the approach is even

competitive with Fourier filtering techniques (e.g. smoothing

spline filter).

Fig. 2 : (a) 256×256 test image, (b) standard K-means segmentation (K=2),
(c) fitted image model with λ=16;  (d) adaptive K-means segmentation.
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