Discrete-Relaxation-based Heuristic Techniques for Video Algorithm/Architecture Matching and
System Level Transformations

Miodrag Potkonjak
C&C Research Laboratories, NEC USA, Princeton, NJ

Abstract: System level design and computational trans-
formations have been rapidly establishing themselves as
important high impact design steps which often have the
most influential impact on the most important final per-
formance parameter, throughput, of a design. In this
paper, we introduce an iterative heuristic approach for
throughput optimization when algorithm-architecture
matching, and any of three behavioral transformations,
retiming, rephasing, and pipelining, are considered
simultaneously. The effectiveness of the approach and
optimization algorithms is demonstrated on several video
and image processing examples.

1.0 Motivation and Related Work

System level design and behavioral transformations
have been rapidly establishing themselves as key design
steps with the most influential impact on key final perfor-
mance metrics, throughput and latency, of a design [Gup94,
Wol94, Pot94a]. While current system level methods and
CAD tools target a variety of application domains, such as
hard-real time systems, embedded systems, and control
applications, it is more and more apparent that DSP, and in
particular image and video processing, applications are the
most amenable domain for treatment using system level syn-
thesis techniques and transformations [Wol94, Pot94a].

This is so because image and video processing are
characterized by very high computational complexity, com-
plex hierarchical structures, and simultaneously high I/O and
memory requirements which makes their manual optimiza-
tion difficult. The video and image processing tasks can be
often described using synchronous data flow computational
model [Lee87]. This model is exceptionally well suited for
the application of optimization techniques due to its deter-
ministic and well structured nature [Lee87, Lee95]. On many
video and image applications are also often imposed intrinsic
high throughput rates and the applications are often subject
to low production cost and low power constraints due to the
nature of modern consumer electronics market and portabil-
ity requirements.

In this paper we study throughput optimization at the
system level. The related work to the efforts presented in this

0-8186-7310-9/95 $4.00 © 1995 IEEE

77

paper can be traced along two lines of research: computa-
tional transformations and algorithm/architecture matching.

Transformations are changes in the structure of a
computation so that the initially specified functional depen-
dencies are preserved. Transformations are used for optimi-
zation of variety of different metrics in several computer
science and engineering domains, including compilers, logic
synthesis, and behavioral synthesis [Pot94].

The problem of throughput optimization using algo-
rithm selection was recently introduced as an optimization
challenge in [Pot94a] where improvements by a factor of 2
in throughput was reported on three smaller benchmark
examples. Potkonjak and Rabaey also showed significantly
higher effectiveness of algorithm selection for optimization
of other design metrics, such as area, power, and fault-toler-
ance overhead. [Pot94a] The scope of this hardware-soft-
ware codesign problem was significantly broadened recently
in [DeS95]. They consider both algorithm and architecture
selection, and more importantly, simultaneously considered
also retiming. The optimal, worst case exponential run-time,
ILP-based solution yielded significant improvements on five
smaller examples.

In this paper, we consider also simultaneous algo-
rithm/architecture matching. However, we enlarge the set of
considered transformations and consider rephasing [Pot95].
We also recognize the limitations of the ILP-based solution
and provide a fast and effective heuristic alternative. The
larger and more powerful set of transformations enables
higher level of optimization and the heuristic algorithms
enables a significantly large application domain of the explo-
ration of solution space at the system level.

2.0 Problem Formulation, Complexity,
and Solution

Rapid progress in VLSI IC design methodologies and
implementation technologies provides a system designer
with numerous architectural platforms such as programma-
ble video processors, DSP general purpose processors,
microprocessors and custom ASIC. Furthermore, for each
type of an implementation platform for a given application

task there are numerous algorithmic options. For example,
for image compression several methods are currently advo-
cated, including transform coding [Ra090], predictive cod-
ing, vector quantization, model-based techniques [Aiz935],
fractal-based techniques [Bar93], adaptive morphological
subband decomposition [Egg95], neural networks-based
approaches [Don95], simulated and mean filed annealing
[0zc95], and wavelets. Even, when application has only one

In
—~» DCT > VANEES
8 L17g i T ou
2]
e
v‘lb IDCT
D 8
11
o ’é DCT,

Figure 1. Throughput Optimization using Simultaneous
Algorithm/Architecture Matchning and Rephasing

computational block, it has been shown that algorithm and
architecture selection has very high impacts on the quality of
the final implementation. For example, it has been shown
that by selecting a proper fast DCT algorithm or a proper fil-
ter structure an order of magnitude improvement in several
design metrics are achievable under the identical throughput
and other implementation constraints [Pot94a]. This effect
has even high impact when hierarchical designs are consid-
ered and when simultaneously the effects of retiming,
rephasing, and pipelining are considered.

We introduce problem of throughput optimization by
employing algorithm/architecture matching and rephasing
and pipelining using the following example. Figure 1 shows
the CDFEG of the discrete cosine transform-based differential
pulse coded modulation (DCT/DPCM) coding scheme with
prediction in the transform domain [Jai81]. Z denotes vector
sum, DCT and IDCT direct and inverse discrete cosine trans-
forms respectively, o is scalar - vector multiplication. The
number next to the each edge denotes the number of inputs/
outputs associated with the blocks to which the edge is asso-
ciated. D denotes a hierarchical delay. Delays (states) are
used to store data transferred between successive iterations
and initial values.

If each input edge of a block has & hierarchical delays,
the functionality of the design is not altered if those delays
are deleted and replaced by k& hierarchical delays on each
output of the block or vice versa. This delay manipulation
technique is called retiming [Lei83]. Pipelining is a behav-

8 OU{Z

78

ioral transformation primarily used for throughput optimiza-
tion. Pipelining adds the equal number of delays on each
primary input or on each primary output. Pipelining is
exceptionally powerful in designs which have no or only few
small feedback parts. Recently a new transformation, rephas-
ing, has been introduced [Pot95]. Rephasing is a timing
transformations which assigns relative timing positioning of
the states variables and the inputs in a computation. Rephas-
ing provides all power of retiming [Lei83] and has several
additional comparative advantages [Pot95], such as auto-
matic elimination of granularity and I/O bottlenecks.
Although the nature of rephasing and retiming is very differ-
ent, many of retiming optimization algorithms can be easily
modified when rephasing is used as one of CDFG optimiza-
tion mechanisms.

Figure 1 illustrates the role of delays (states) in a
hierarchical computations for breaking feedback loops and
establishing the proper timing relationship among computa-
tional nodes. Note that the delay are used to break two feed-
back loops in the example:

2, 20-2Z, > IDCT -5 DCT, -«
and

2,2 IDCT - DCT, > «.

Each block in Figure 1 can be implemented using a
variety of algorithms (CDFGs) and architectures. For exam-
ple, for discrete cosine transform (DCT) options include the
following fast algorithms: Lee’s, Wang’s, decimation in fre-
quency (DIF), decimation in time (DIT), QR-planar rotation,
Givens planar rotation, Arai’s algorithm, and direct DCT
[Rao90]. In addition, for each of the algorithms there are
numerous implementation platforms, such as microproces-
sors, DSP processors, video processors, and custom ASIC.
Equations (1) and (2) show the distances between each pair
of nodes for two among several other DCT algorithm/archi-
tecture matching. The matrices are formed in a such way that
element a;; represents the distance between input i and out-
put ;. Note, that distances depend not only on the algorithm,
but also on the selected architecture-implementation plat-
form.

The goal is to select an algorithm/architecture pair for
each building block of the hierarchical CDFG so that after
the application of retiming, rephasing, or pipelining, the final
maximum throughput (sampling rate) is maximized. It is
important 0 note that there is a dependence between any of
the considered transformations and algorithm/architecture
selection. Therefore, the successive resolution of the two

45668888 (45545858
45668888 45546855
45668888 45644855
DCT£___45668888 ()DpCT, = [45744855
45668888 ! 45546855
45668888 45546855
45668888 45647855
14566888 8 145746855

optimization degrees of freedom may result in an overall
inferior final solution [DeS95].

We proved that the optimization problem of optimiz-
ing throughput is NP-complete when rephasing is considered
simultaneously with algorithm/architecture matching by
transforming the equal-subset problem into the new problem
using the Karp’s polynomial reduction technique. The proof
is a variation of a similar proof for NP-completeness of
throughput optimization using only algorithm/architecture
matching [Pot94a]).

When the goal is generation of the optimal solution of
this problem one option is to build mathematical model
which will serve as the input to the ILP formulation for solv-
ing throughput optimization using retiming or algorithm/
architecture selection and retiming problems [Lei9l,
DeS95]. Using as a starting point the retiming algorithm
[Lei91], first an important special case of the new problem
when all computational blocks have an arbitrary number of
inputs, but only 1 output can be solved. Once this special
case is solved it can serve as a basis for solving the general
problem, when no restriction is imposed on the number of
outputs of the blocks. The detailed description of the mathe-
matical model and the ILP-based solution is given in
[DeS95]. However, it is important to note that already when
only retiming is considered only relatively small instances of
the general problem can be solved in reasonable run-times.
As we already mentioned, most often in image and video
processing considered computations are relatively large. In
order to address the large instances of the problem, we
developed the following, discrete relaxation-based, heuristic
approach. While we from now on will consider only rephas-
ing as transformation. The heuristic optimization algorithm
can be easily retargeted to retiming and/or pipelining by
replacing the modified Leiserson-Saxe algorithm in the 3rd
step by the original Leiserson-Saxe algorithm for critical
path minimization using retiming [Lei83].

Heuristic Algorithm for Throughput Optimization
using Algorithm/Architecture Matching and Rephasing:

@

79

1. Eliminate all inferior choices for each individual
block;

2. Form a super-algorithm solution for each block;

3. Do optimal rephasing using the modified Leiser-
son-Saxe algorithm;

4. For each block substitute the super-algorithm solu-
tion with one of choices which.

In the first step of the optimization algorithm all alter-
natives (matches between available algorithms and architec-
tures) which have all distances between inputs and outputs
longer than some other choice are eliminated without loss of
optimality. In the second step of the heuristic algorithm
super-algorithm is a new algorithm which has as the input-
output distances the shortest distance between a given pair
input-output as provided by any of the available algorithms.
Note that after applying the third step of algorithm on this
computational structure a lower bound on the final solution
is obtained. The third step is direct application of the stan-
dard retiming for critical path minimization algorithm
[Lei91] on the transformed CDFG where each delay can be
positioned on arbitrary position inside any of the computa-
tional blocks. This is accomplished by replacing each com-
putational block with unit delay blocks, while preserving the
/O distances required by the super-algorithms.

In the last step, the super-algorithms are replaced by
the available choices, starting from the most critical blocks
where the discrepancies between the super-algorithm and the
available algorithms is the largest. After the each selection of
a particular algorithm for the targeted computational block in
the last step, the third step is repeated in order to better
explore inter-dependencies between algorithm/architecture
selection and rephasing.

3.0 Experimental Results

The following image and video processing examples
have been optimized using the proposed methodologies and
optimization algorithms.

(1) HOM - System for Homomorphic filtering of images
{Rao90];

(2) IMAGE - System for Enhancement of compressed
images [Ra090];

(3) LMS - Transform domain adaptive LMS filter [Rao90];

(4) DDPCM - Motion Compensation (MC) interframe DCT/
DPCM coding with prediction [Jai81]; and

(5) DDCT - MC interframe DCT/DPCM coding with pre-
diction in the temporal domain [Jai81].

Parameter Q in the LMS examples denotes different
versions of updating algorithms with three different rates of
convergence. The large values of Q correspond to a large
number of states (and therefore large latency) in a feedback
part of the computation.

Table 1 shows the obtained results achieved using
the discrete-relaxation-based iterative heuristic optimization
algorithm introduced in the previos section. This Table
shows the initial throughput and the throughput after optimi-
zation using algorithm/architecture matching and rephasing
The optimization is conducted by the heuristic algorithm
introduced in the previous section. The average and median
improvements are by factors of 2.65 and 2.42 respectively.
It is interesting to note that although only heuristic solutions
were obtainable, the improvements factors are higher than in
the previously reported studies when the optimal, worst case
exponential run-time, optimization algorithm which consid-
ers only retiming was used. This is so because the optimiza-
tion power of rephasing at the system level is often
significantly higher than the optimization power or retiming.
Run times of the iterative heuristic algorithm were in all
cases less than 30 seconds on SUN SparcStation IPX with 64
MB memory.

Throughput | Throughput | Throughput
Design before after Improve-
optimization | optimization ment
hHOM 29 12 242
IMAGE 21 7 3.00
LMS (Q=1) 32 18 1.78
LMS (Q=2) 29 12 242
LMS (Q =3) 21 10 2.10
DDPCM 39 11 3.55
DDCT 46 14 3.29

Table 1: Throughput optimization using algorithm selection

and rephasing: Experimental Results

4.0 Conclusion

We studied the algorithm-architecture matching prob-
lem when simultaneously three powerful transformations,
retiming, pipelining, and rephasing, are considered. After
establishing the computational complexity of the optimiza-
tion problem, we developed a simple and efficient iterative
heuristic solution. The proposed discrete-relaxation-based
heuristic solution solves large instances of the problem in

80

very short run-times and achieves significant improvements
over initial designs.

5.0 References

[Aiz95] K. Aizawa, T.S. Huang, “Model-Based Image Coding:
Advanced Video Coding Techniques for Very Low Bit-
Rate Applications”, Proc. of the IEEE, Vol. 83, No. 2, pp.
259-271, 1995.

[Bar93] M.E. Barnsley, L.P. Hurd, “Fractal Image Compression”,
AK Peters, Wellesley, MA, 1993.

[Chi95] L. Chiariglione, “The Development of an Integrated
Audiovisual Coding Standard: MPEG™, Proc. of the IEEE,
Vol. 83, No. 2, pp. 151-157, 1995.

[DeS95] J. DeSouza-Batista, M. Potkonjak, A. Parker, “Optimal
Techniques for Video Algorithm/Architecture Matching
and System Level Transformations,”, NEC USA Techni-
cal Report, 1995.

[Don95] R.D. Dony, S. Haykin, “Neural Network Approaches to
Image Compression”, Proc. of the IEEE, Vol. 83, No. 2,
pp- 288-303, 1995.

[bGup94] R.K. Gupta, C.N. Coehlo, G. De Micheli, “Program
Implementation Schemes for Hardware-Software Sys-
tem”, IEEE Computer, Vol. 27, No. 1, pp. 48-55, 1991

R. Jain, A.K. Jain, “Displacement measurement and its
application ininterframe image coding", IEEE Trans. on
Comm., Vol. 29, No. 12, pp.1799-1808, 1981.

[Lee87] E. A. Lee and D. G. Messerschmitt, > Static Scheduling of
Synchronous Dataflow Programs for Digital Signal Pro-
cessing”, IEEE Trans. on Computers, Vol. 36, No. 1, pp.
24-35, 1987.

[Lee95] E.A. Lee, T.M. Parks, “Dataflow Process Networks”, Proc.
of the IEEE, Vol. 83, No. 5, pp. 773-799, 1995.

[Lei83] C.E. Leiserson, FM. Rose, J.B. Saxe, “Optimizing syn-
chronous circuits by retiming”, Proceedings of Third Con-
ference on VLSI, pp. 23-36, 1983.

[0zc95] T. Ozcelik, J.C. Brailean, A. Katsaggelos, “Image and
Video Compression Algorithms Based on Recovery Tech-
niques Using Mean Filed Annealing”, Proc. of the IEEE,
Vol. 83, No. 2, pp. 304-316, 1995.

[Pir95] P. Pirsch, N. Demassieux, W. Gehrke, “VLSI Architectures
for Video Compression - A Survey”, Proc. of the IEEE,
Vol. 83, No. 2, pp. 220-246, 1995 .

[Pot94a] M. Potkonjak, J. Rabaey, “Algorithm Selection: A Quan-
titative Computation-Intensive Optimization Approach”,
ICCADY4 International Conference on Computer-Aided
Design, pp. 90-95, November 1994.

[Pot94b] M. Potkonjak, J. Rabaey, "Optimizing Resource Utiliza-
tion Using Transformations”, IEEE Transactions on CAD,
Vol. 13, No. 3, pp. 277-292, March 1994.

[Pot95] M. Potkonjak, M.B. Srivastava, “Rephasing: A transforma-
tion technique for the manipulation of timing constraints”,
pp. 107-112, Design Automation Conference, 1995.

[Rao90] K.R. Rao, P. Yip:, “Discrete Cosine Transform”, Academic
Press, Inc., San Diego, CA , 1990

[Wol94] W.H. Wolf, “Hardware-Software Co-Design of Embedded
Systems”, Proc. of the IEEE, Vol. 82, No. 7, pp. 967-989,
1994.

[Jai81]

