
LOSSLESS COMPRESSION OF IMAGES USING LOGIC MINIMIZATION

Ani1 Kumar Chaudhay, Jacob Augustine and James Jacob

Department of Electrical Communication Engineering
Indian Institute of Science, Bangalore 560 012 INDIA.

E-mail: james@ece.iisc.ernet.in

ABSTRACT
A novel approach for the lossless compression of images
is presented. After preprocessing, the image is split into
bit planes which are then divided into smaller blocks.
Mixed blocks are converted to Boolean switching func-
tions and then subjected to minimization to arrive at a
compact representation, leading to possible data com-
pression. Blocks are then classified into distinct events
based on the outcome of logic minimization. A Huff-
man code is constructed and the blocks are encoded
suitably. This approach provides a framework to incor-
porate various possible switching theoretic techniques
into the basic coding scheme proposed by us. This pa-
per also shows that logic minimization can be used to
handle blocks of larger size, than practically possible
with Huffman coding, to yield significant compression
on gray-level images. Our approach compares well with
JPEG in terms of compression ratio.

1. INTRODUCTION

Kunt and Johnsen [l] have proposed a lossless compres-
sion technique called Block Coding for binary images
and have subsequently extended to gray-level images,
by applying it on the bit planes. Pixel values of the
image are replaced by equivalent Gray codes to reduce
transitions on the bit planes. In Block coding, each bit
plane is divided into smaller blocks of size n x m which
are classified into three types namely, all-white, all-
black, and mixed and encoded using prefix codes 'O',
'll', and '10' respectively. Codeword of a maxed block
is obtained by the nm bits of the block, preceded by
the prefix '10'. It is possible to achieve better compres-
sion by entropy coding of the mixed blocks. The 2""
different possible bit patterns of the block can be con-
sidered as source messages and coded using a variable
length code such as Huffman [2]. By making n and m
as large as possible, better result can be obtained with
Huffman coding [I, 31. However, for large alphabet
size the design and implementation of Huffman code
is complicated as it requires the measurement of 2""

0-7803-3258-X/96/$5.00 0 1996 IEEE 77

probabilities and table look-up involving a dictionary
of possibly large size. In [l], the mized blocks are Huff-
man coded when their size is small enough (3 x 3 or
smaller), otherwise transmitted as they are. The mixed
blocks have also been arithmetic coded to increase the
compression ratio in the case of binary images [4].

In this paper we propose a scheme wherein the mixed
blocks are classified into many categories according to
the outcome of logic minimization. Huffman codes are
used to indicate various types of blocks, which makes
the logic coding [5] scheme proposed by us more effi-
cient. It may also be observed that logic minimization
can be used to handle blocks of larger size than prac-
tically possible with Huffman coding, and in combina-
tion with block coding can yield significant compression
on gray-level images. The probability measurement is
done on a much smaller set of events rather than on
2"" events.

2. BACKGROUND

We define few terms [6, 73 required for explaining our
compression scheme. A Boolean switching function
F is a mapping F : BN + B, where B = (0, 1). In
the truth table of a switching function of N variables,
there are 2N rows. Each of these rows which repre-
sents an input state vector is called a minterm. In a
switching function, the ON-set is the set of minterms
whose outputs are mapped to 1 and the OFF-set is
the set of minterms whose outputs are mapped to 0. A
cube is an N-tuple A = (a l , a2, ..., aN}, where element
ai E (0, l,X}. Dimension of a cube is the number
of X s in it. An a cube has 2Q minterms (zero cubes)
within it, Cube A subsumes cube B (denoted as A 5
B), if all minterms of A are contained in B. We define
compression eficiency or compression ratio as,

total input bytes - total output bytes
total input bytes

x 100% (1)

In our earlier work [5] the possibility of compress-
ing mixed blocks using logic minimization was demon-

strated. Results obtained using the technique on gray-
level images were comparable to that of the lossless
mode of JPEG [8]. Our approach consisted of recoding
and Gray coding the intensity levels, bit plane decom-
position, and logic coding. Recoding consists of arrang-
ing the intensity values in an image contiguously and
Gray coding substitutes the recoded intensity values
by their equivalent Gray codes. The image is then de-
composed into its individual bit planes and each bit
plane is divided into smaller blocks of size n x m. In
our switching theoretic approach, a mixed block is con-
verted to a Boolean switching function of N variables
(N = Zogznm) by treating the binary values of the nm
pixels as the output of the function. We have chosen
integer powers of 2 as values for n and m. Truth table
of the switching function for a block is generated by as-
signing the pixels to minterms according to Gray code,
such that geometrically adjacent pixels are mapped to
logically adjacent minterms. This assignment helps in
minimization since any cluster of 2ff logically adjacent
minterms combine to form a single a-cube. A pixel in
an x m block has N logically adjacent pixels. Blocks
are scanned row wise with a reversal of the direction
for adjacent rows. Then each function is minimized us-
ing a twc-level logic minimizer such as ESPRESSO [6]
and if minimization results in compression, the mini-
mal two-level sum-of-products form of the function is
encoded to generate the compressed image. Decoding
of logic coded blocks can be done using the cube sub-
suming operation [5]. Decoding is relatively simple and
consists of recovering the encoded cubes/minterms cor-
responding to a block and expanding the function back
into its truth table form.

2 cubes'(0N-set)
3 cubes (ON-set)
1 minterm (ON-set)
2 minterms(0N-set)
3 minterms (ON-set)
4 minterms (ON-set)
1 cube (OFF-set)
2 cubes (OFF-set)
3 cubes (OFF-set)
1 minterm (OFF-set)
2 minterms (OFF-set)
3 minterms [OFF-set)

3. HUFFMAN CODING OF THE
SWITCHING THEORETIC EVENT§

16
17

In the present scheme we further classify mixed blocks
on the basis of the result of logic minimiiation. Events
and the bounds of bits required to code them, excluding
the Huffman code for these events are given in Table 1.
The experiment was restricted to block sizes of 8 x 4 and
4 x 8. In this case N = log232 = 5 and in general, the
blocks reducible to 3 or less cubes as well as those with
4 or less minterms are logically compressible. We have
considered a total of 17 events as indicated in Table
1. They are, all-white blocks, all-black blocks, blocks
whose ON-set can be compressed to 1, 2, 3 cubes or 1,
2, 3, 4 minterms, blocks whose OFF-set can be com-
pressed to 1, 2, 3 cubes or 1, 2, 3, 4 minterms and the
incompressible blocks. A Huffman code is constructed
for these 17 events based on the statistics and blocks
are encoded suitably.

4 minterms (OFF-set) 4N 4 N
mixed blocks,
logically incompressible nm nm

Table 1: Switching theoretic events and bit require-
ment.

I Event I Switching theoretic I Lower I Upper
I event I bound I bound
1 I all-white block 1 0 1 0

I 2 I all-black block 1 0 1 0

3
4
5
6
7
8
9
10
11
12
13
14
15

mixed blocks logicall
1 cube (ON-set)

compressible to
1.67N

3 N 3 N
4N

1.67N

2 N 2N
3 N 3 N

In the case of events where the minimized ON/OFF
sets have 1, 2 or 3, cubes, a code set (0 , 10, 11) which
satisfies the prefix property is used for the set of cube
symbols (0 , 1, X } by alloting the one bit code to the
symbol with maximum frequency of occurrence on a
given bit plane. In the worst case (equally likely sym-
bols 0, 1 and X) the average length of the prefix code
is 5 bits/symbol. Bits required for the representation
of an N variable cube is upper bounded by 1.67N or
1.671og2nm. A cube can be coded using N bits when
there are only two symbols (1 bit/symbol), which cor-
responds to the lower bound. When there are more
cubes, these bounds should be multiplied by the corre-
sponding number. Rows 3 and 10 ,4 and 11, 5 and 12,
of Table 1 show the bits required in the cases of 1, 2,
and 3 cubes respectively. Minterms have only two sym-
bols (0 and 1) and can be coded using 1 bit/symbol.
Bits required for the cases of minterms are shown in
the rows 6, 7, 8, 9, 13, 14, 15, and 16 of Table 1. Bits
required for an incompressible block is nm as shown in
the last row.

3.1. Format of the Compressed Image

Each encoded bit plane has the structure shown in Fig-
ure 1. First three bit field denotes the bit plane type
as indicated below:

000 : all-white bit plane.

001 : all-black bit plane.

78

bit plane type

4
5
6
7
8

event

bits

2 cubes 2.2 3.7 3.2 3.1 1.4
3 cubes 1.7 2.2 4.2 3.3 3.2
1 minterm 1.8 3.6 3.4 2.6 0.6
2 minterms 0.7 1.2 1.2 1.5 0.8
3 minterms 0.2 0.2 0.6 0.6 0.4

block information

-5

9

10

. --.-.

4 minterms I 0.2 I 0.4 I 0.2 I 0.3 I 0.3
mixed blocks with OFF-set compressed to

1 cube I 3.1 I 1.6 I 1.9 I 1.5 I 0.5

Huffman
codes

11
12
13
14
15

encoded
Huffman

minterms

2 cubes 4.0 3.5 4.2 2.6 1.9
3 cubes 4.6 4.6 5.9 4.3 3.5
1 minterm 4.1 2.7 3.3 2.8 2.5
2 minterms 1.0 0.5 1.9 1.6 1.4
3 minterms 0.4 0.4 0.6 0.3 1.0

global information for the bit plane

Figure 1: Format of the compressed bit plane.

18

19

20

010 : incompressible bit plane.

100 : logically compressible bit plane with code al-
lotment for cube symbols as,
0 + 0, lO + 1,ll + x.

101 : logically compressible bit plane with code al-
lotment for cube symbols as,
0 + 1 , l O +x, 11 + 0.

lotment for cube symbols as,
110 : logically compressible bit plane with code al-

0 +x, 10 + 0 , l l + 1.

Next 17 bits called event flags are used to indicate
the presence/absence of a given event type, as it is
possible that some of them never occur in a given bit
plane. Then we store the Huffman code information
required for decoding. This consists of the code length
followed by the Huffman code alloted to the events
(from the set of 17 possible events) that occur on a
given bit plane. This is followed by the block infor-
mation for each block, which comprises of the Huffman
code indicating the block type and the encoded cubes
(if any) appended to it.

- -
incompressible 9.4 20.1 30.7 52.3 78.6
mixed logically
compressible 25.5 26.4 32.2 26.0 18.0
compression
ratio 71.2 59.3 44.6 27.5 6.6

Overall compression ratio (%)
(assuming expanding bit planes

are stored as they are) 26.1

4. EXPERIMENTAL RESULTS

The compression and decompression techniques have
been implemented in 'C' on an IBM RS-6000/580 work-
station running under UNIX, and tested on standard
images, lena, baboon, boats (nic.funet.fi: /pub/graphics/
misc /test-images) and girl (eedsp.gatech.edu: /database
/images), of subsampled (picking alternate pixels in
both directions) size 256 x 256 pixels and 8 bits/pixel.
We have used a fixed block size of 8 x 4 (4 x 8 for boats

Table 2: Statistics of block types for lena.

all-white 14.1 41.2 17.9 7.4 0.9
all-black 51.0 12.3 19.2 14.3 2.5

mixed blocks with ON-set compressed to
1 cube 1.3 1.7 1.6 0.7 0.2

16 I 4 minterms
17 I mixed logically I I I I I

I 0.2 I 0.1 I 0.0 I 0.2 I 0.5

) for all the bit planes of an image to carry out the
experiment. Preprocessing step of recoding and Gray
coding of the pixel values are applied before splitting
each image to its individual bit planes.

Table 2 gives the statistics of various types of blocks
on the bit planes of lena. The MSB plane is s7. h w s
1 to 17 give the percentages of the seventeen events
indicated. Riow 18 gives the total percentage of the
various types of logically compressible blocks, which is
the sum of entries in rows 3 to 16. Sum of the values
in rows 1, 2, 17 and 18 should add up to 100. Total
compression ratio obtained on each bit plane is given in
row 19. Compression ratio for the entire image is given
in the last row. It may be observed that mized blocks
constitute a large portion and hence our attempt to
compress such blocks is justifled. Also the occurrence
of different types of logically compressible blocks justify
the usage of Huffman codes, to efficiently indicate their
type. Note that the least 3 bit planes (s2, s l and S O) are
stored as they are since they remain incompressible by
our method and no data is given in Table 2 for them.

Table 3 gives the results of the compression exper-
iment as well as a comparison with the lossless mode
of JPEG. We have used the PVRG-JPEG (Portable
Video Research Group at Stanford) Codecl.1 (have-

79

Table 3: Results for logic coding with Huffman header.

Compression and decompression CPU time in seconds is on IBM RS-6000/580.

fun.stanford.edu: /pub/jpeg/ JPEGvl.2.tar.Z). JPEG
was run with all the 7 predictors available and the best
and worst results are reported in Table 3. Compression
ratios obtained by logic coding are comparable to those
obtained by JPEG. The best result for logic coding is
superior to the best of JPEG result for girl , while for
the remaining images our results are within 3.8% of
the best JPEG result, though we have not employed
any decorrelation scheme as done in JPEG. Average
compression ratio for the 4 images is 27.3 % by this
approach whereas it is 28.6 % using JPEG with the
most suitable predictor for each image.

CPU time reported for the compression scheme is
presently rather high. It is primarily due to the fact
that ESPRESSO is used as a stand alone package and
considerable communication and file manipulation over-
heads are incurred. As the cube subsuming operation
used in decompression is relatively simple, the time re-
quired to reconstruct the logic coded blocks is signifi-
cantly less and the total decompression time is com-
parable to that of JPEG. Improving the time perfor-
mance, however, has not been attempted in this work.

5. CONCLUSIONS

Contribution of this work is primarily two fold. Firstly,
it suggests a practical solution to the problem of han-
dling large alphabet size in Huffman coding of the pic-
ture blocks, by translating a group of events to a single
event. For example, there may be a large number of
blocks that are minimizable to a single cube, which
is treated as a single event. Secondly, it provides a
possible direction for further improvement, by incor-
porating other switching theoretic techniques for com-
pressing the blocks, logically incompressible according
to the present scheme. It is well known that the min-
imum two-level sum-of-products description is not the
most compact representation for most switching func-
tions. Alternative representations such as Binary Deci-
sion Diagrams (BDDs) [9] or multilevel logic forms [7]

can lead to more compact representations. One can ex-
plore the different possible representations of the func-
tion corresponding to each block and encode the op-
timal representation. We hope that such an approach
will ultimately result in a scheme better than the cur-
rently available lossless compression schemes.

6. REFERENCES

[l] M. Kunt and 0. Johnsen, “Block Coding of Graphics:
A Tutorial Review,” Proc. IEEE, vol. 68, no. 7, pp.
770-786, July 1980.

[2] D. A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes,” Proc. IRE, vol. 40, no.
10, pp. 1098-1101, September 1952.

[3] B. Y. Kavalerchik, “Generalized Block Coding of Black
and White Images,” IEEE l k a n s . on Image Processing,
vol. 1, no. 4, pp. 518-520, October 1992.

[4] P. Fkanti, “A Fast and Efficient Compression Method
for Binary Images,” Signal Processing: Image Commu-
nication (Elsevier Science), pp. 69-76, 6(1994),

[5] J. Augustine, W. Feng, A. Makur, and J. Jacob,
‘‘ Switching Theoretic Approach to Image Compres-
sion; Signal Processing (Ekevier Science), vol. 44, pp.
243-246, June 1995.

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A.
L. Sangiovanni-Vincentelli, Logic Minimization Algo-
rithms for VLSI Synthesis, Kluwer Academic Publish-
ers, Boston, 1984.

[7] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthe-
sis, McGraw-Hill Inc., New York, 1994.

[8] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image
Compression Standard, Van Nostrand Reinhold, New
York, 1993.

[9] R. E. Bryant, “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams,” ACM Computing
Surveys, vol. 24, no. 3, pp. 293-318, September 1992.

80

