
IEEE International Conference on Image Processing (ICIP’96), Lausanne, Sept. 1996 1

EVOLUTIONARY FRACTAL IMAGE COMPRESSION

Dietmar Saupe, Matthias Ruhl

Universität Freiburg, Institut für Informatik, Am Flughafen 17, 79110 Freiburg, Germany
E-mail: saupe,ruhl@informatik.uni-freiburg.de

ABSTRACT

This paper introduces evolutionary computing to frac-
tal image compression. In fractal image compression
[1] a partitioning of the image into ranges is required.
We propose to use evolutionary computing to find good
partitionings. Here ranges are connected sets of small
square image blocks. Populations consist of Np config-
urations, each of which is a partitioning with a fractal
code. In the evolution each configuration produces σ
children who inherit their parent partitionings except
for two random neighboring ranges which are merged.
From the offspring the best ones are selected for the
next generation population based on a fitness crite-
rion (collage error). We show that a far better rate-
distortion curve can be obtained with this approach as
compared to traditional quad-tree partitionings.

1. EVOLUTION OF PARTITIONINGS

Finding the optimal partitioning at a given bit-rate is
an unsolved problem in fractal image compression. The
space of all partitionings with a given number of ranges
is simply too huge. Traditionally, deterministically de-
rived quad-tree [2, 3], rectangular [4], triangular [5, 6],
and other polygonal [7] partitionings are used. We fol-
low [8] and define ranges as unions of edge-connected
small square image blocks. The type of fractal im-
age encoding chosen is the standard one: For a range
block R we consider a pool of domain blocks twice the
linear size. The domain blocks are shrunken by pixel
averaging to match the range block size. This pool of
codebook blocks is enlarged by including all 8 isomet-
ric versions (rotations and flips) of a block. This gives
a pool of codebook blocks D1, . . . , DND . For range R
and codebook block D we let

(s, o) = arg min
s,o∈R

‖R− (sD + o1)‖2

where 1 is the flat block with maximal intensity at ev-
ery pixel. The coefficient s is clamped to [−1, 1] to en-
sure convergence in the decoding and then both s and
o are uniformly quantized yielding s and o. The collage

error for range R is E(D,R) = ‖R−(sD+o1)‖2. Sort-
ing the codebook blocks Dk with respect to increasing
collage error E(Dk, R) yields indices k1, . . . , kND . The
fractal code for range R consists of the optimal index
k1 and the corresponding quantized scaling and offset
parameters s and o.

Initially we subdivide the image to be encoded into
atomic blocks of the same size, e.g., of size 4 by 4 pixels.
With these notations we can now define configurations.
A configuration consists of

• a partitioning, i.e., a set of mutually disjoint range
blocks which cover the entire image; each range block
consists of an edge-connected set of atomic blocks,
• for each range block of the partitioning:
− a list of d codebook indices k1, . . . , kd,
− the optimal quantized coefficients s, o correspond-

ing to codebook index k1.

A population is a set of Np configurations which
have the same number of ranges in their partitionings.
The evolution is started with an initial population of
Np identical configurations given by

• the uniform partitioning obtained by subdividing the
image into atomic blocks,
• for each range (atomic block): optimal codebook in-

dices k1, . . . , kd, and coefficients s, o.

In each cycle of the evolution an offspring genera-
tion of new configurations is produced as follows: For
each configuration in the parent population we main-
tain a list of all neighboring range pairs (ranges are
considered neighbors when they share an edge of an
atomic block). From this list one range pair is cho-
sen at random. These two ranges are united yielding
a new partition with the two old ranges removed and
with their union as a new range.

In order to obtain a matching domain block for the
new enlarged range we do not afford a search through
the full respective domain pool but rather consider only
those domains that are given by the lists of the domains
inherited from the parent ranges. Of course these do-
mains have to be extended appropriately to match the

IEEE International Conference on Image Processing (ICIP’96), Lausanne, Sept. 1996 2

larger size of the new range. We thus obtain 2d code-
book blocks from which we keep only the better half
yielding a new set of d domain indices for the new range
along with the corresponding quantized coefficients s, o.

This describes how a parent configuration leads to
a child configuration with one less range. Repeating
this process σ times for each configuration of a pop-
ulation produces a total of σNp child configurations.
Only the best Np of these are kept and make up the
next generation population. The fitness criterion is in
accordance with fractal image compression: theNp sur-
viving configurations are those with the least collage
errors E(D,R), summed up over all ranges of the cor-
responding partition.

From each population the best fractal encoding can
be easily extracted for flow control. Overall, the evo-
lutionary process starts with a fractal encoding hav-
ing a large bit-rate and a small collage error. Each
generation has one less range. Thus, the bit-rate de-
creases, while the collage error increases. The evolution
is halted, when a given tolerance threshold for the col-
lage error is exceeded, or when the desired bit-rate is
achieved.

Besides collage error threshold and final bit-rate the
parameters in the evolutionary process are the popula-
tion size Np, the number d of codebook indices stored
for each range, and the branching factor σ.

2. CODING OF THE PARTITION

We now describe how the partitions, arising in the evo-
lutionary coding process, are stored efficiently. We
have implemented and compared the following four al-
gorithms (see Figure 1).

Method 1. For each atomic block two bits are stored
indicating whether it is connected to its right and lower
neighbors. The resulting bit-stream is grouped into
bytes and compressed using an LZW-algorithm. De-
spite its simplicity this method compares well with the
other algorithms (see Figure 1).

The following algorithms use a derivative chain code
(DCC) to store the partitions. They proceed by track-
ing the range boundaries, i.e., the black lines in Figure
3, and storing the necessary movements.

Method 2. The following procedure is iterated until
the range contours are completely described. First, an
unvisited point on the range boundary is selected, its
position is output and pushed a on stack. As long as
the stack is not empty, the following steps are repeated.
The stack is popped, and starting at the given position,
the boundary is tracked until an already visited posi-
tion is reached. At every step we output a symbol,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000 12000 14000 16000

B
yt

es

Ranges

Method 1
Method 2
Method 3
Method 4

Figure 1: Comparison of partition compression
schemes, explained in the text. The underlying par-
titions stem from 512 × 512 Lenna.

showing which of the three directions (turn left, con-
tinue straight ahead, turn right) we can take next. At
contour branching points we take the first branch (in
the aforementioned order) and push the endpoints of
the other available line segments on the stack for later
perusal. Since at every step the contour must continue
in at least one of the three directions, 23−1 = 7 symbols
suffice for the encoding of a step. Finally, the resulting
symbol string is arithmetic entropy coded. Note that
this method allows for a shorter code than Method 1
if the ranges are large (see Figure 1). This is to be
expected since there are no bits used for the interior of
these ranges.

A refinement of this algorithm leads to the next two
methods.

Method 3. The main deficiency of Method 2 is that
some line segments are stored twice (see Figure 2). By
outputting at every step the possible movements (one
bit each), but omitting the redundant information, we
can reduce the code size even further. The bit-stream
is grouped into bytes and LZW-compressed.

A

X

Y

Figure 2: If the range contour is encoded by Method 2,
every time the trace closes in on itself, a line segment
is stored twice. In the figure segment A is stored twice:
first, when position X is traversed and a second time
when Y is visited.

IEEE International Conference on Image Processing (ICIP’96), Lausanne, Sept. 1996 3

Figure 3: Partitioning of 512 × 512 image by evolu-
tion with 500 ranges (compression ratio 70.5). Shape
information = 2029 bytes, transformation information
= 1691 bytes.

Method 4. Alternatively, instead of using a bit-stream
as in Method 3, we can output a symbol at every step
of the tracing process. One could use a different symbol
set depending on whether there are 1, 2 or 3 unknown
directions at a given step. But since the decoder knows
at each step which symbol group (1,2,3 bits) to expect,
seven symbols suffice as in Method 2. Arithmetic en-
tropy coding the resulting string again yields our final
output.

From Figure 1 it becomes clear that for all ranges ei-
ther Method 3 or Method 4 yields the shortest code. In
our implementation we therefore compute both codes
and store the shorter one, spending one additional bit
to tell the decoder about our choice.

3. RESULTS

In a first test we apply the evolutionary algorithm and
the quad-tree method [9] to the 512 × 512 test image
Lenna (Figures 3 and 4). The procedure is initialized
with a fractal code using atomic blocks of size 4 ×
4 pixels obtained by full search of a codebook of size
64× 64× 8. With the quad-tree method we use code-
books of the same size at each level of the quad-tree
and full search (no classification). The performances of
both methods are comparable at low compression ra-

Parameters Times in secs
Np σ d Initialization Evolution
5 5 5 1305 129
10 10 10 1305 458
20 20 20 1305 2473

Table 1: Computation times of evolution to 500 ranges.

PSNR Results for 256 × 256 Lenna (dB)
Np = 5 Np = 10 Np = 20

σ d=5 10 20 d=5 10 20 d=5 10 20
5 27.6 27.7 27.7 27.7 27.8 27.8 27.7 27.8 27.8
10 27.9 28.0 27.9 27.9 27.9 28.1 28.0 28.0 28.0
20 28.1 28.0 28.1 28.0 28.1 28.1 28.0 28.1 28.2

Table 2: Performance of the evolutionary method with
different parameter settings for the population size Np,
the branching factor σ and the adaptive domain pool
size d. For all 27 runs the bit-rates of the fractal codes
are the same, based on partitions with 500 ranges.

tios as expected. However, at high compression ratios
we observe large gains with our method up to several
dB of PSNR.

In a second experiment we test the performance of
the evolutionary algorithm as a function of its param-
eters Np, σ, and d. Tables 1 and 2 list the results for
the 256 × 256 image Lenna. The most critical param-
eter is the branching factor σ. With the large value of
σ = 20 we get close to the best results even when the
other two parameters are small. Table 1 shows some
of the corresponding computation times of our exper-
imental non-optimized compression program (running
on an R4600SC 133 MHz processor of SGI). A large
part of the time is spent finding the initial fractal code
by full search.

Finally, the image quality may be improved by more
searching in the final stage. Based on the partitions
generated by the evolutionary encoder, we computed
the optimum range-domain pairings. Interestingly, the
improvement over the original code is rather small (see
Figure 5).

4. CONCLUSION

In this paper we have demonstrated the potential of
evolutionary computing to solve one of the most impor-
tant problems in fractal image compression: optimiz-
ing the range partitioning. This work motivates many
more investigations in this direction of research:

• The initialization takes up a large fraction of the to-
tal encoding time (see Table 1). The effect of faster
(suboptimal) initialization schemes should therefore
be examined.
• The evolution can be accelerated by replacing error

based decisions by something simpler, e.g., by using

IEEE International Conference on Image Processing (ICIP’96), Lausanne, Sept. 1996 4

26

28

30

32

34

36

38

0 10 20 30 40 50 60 70 80

P
S

N
R

 (
dB

)

Compression Ratio

Evolutionary Coding
Quadtree partitioning

Figure 4: Rate distortion curves for the evolution-
ary method versus the quad-tree method (512 × 512
Lenna). Parameters of our method are Np = d = 10
and σ = 20.

range block variances. That is, we seek to minimize∑
i

∑size(i)
j=1 (xij − (1

size(i) ·
∑size(i)
k=1 xik))2, where the

xij are the pixels belonging to range i. Since here
it is not necessary to do the time-consuming range-
domain comparisons, this scheme is much faster than
the error based method. The range-domain pairing
needs only be computed at the end of the evolution.
Sophisticated algorithms exist for this purpose [10].
• The error-based fitness criterion can be replaced by

a fitness criterion taking into account the size of the
partition code. In this way we introduce entropy-
constrained partitions.
• One may even consider a set of competitive strategies

to select the range pair to be joined in an offspring
configuration. Different strategies may prove to be
appropriate at different stages of the evolution.
• The size of the atomic blocks can be set to other

values than 4 × 4 pixels.
• Entropy coding of the parameters for the transforma-

tions of the fractal encoding may further improve the
bit-rates.
• Finally, instead of probabilistically selecting at each

step of the encoding process a range pair to merge,
one can deterministically compute the optimal range
pair, i.e., the range pair whose merger yields the low-
est increase of the overall error. In fact, a first im-
plementation indicates, that this algorithm may out-
perform the nondeterministic one in terms of speed
without decreasing the resulting image quality.

Several of these extensions will be investigated in a
forthcoming paper.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80

P
S

N
R

 (
db

)

Compression Ratio

Gain

Figure 5: PSNR gain if full search fractal encoding is
applied to the partitions generated by the evolutionary
process (parameters as in Figure 4).

5. REFERENCES

[1] Jacquin, A. E., Image coding based on a fractal
theory of iterated contractive image transforma-
tions, IEEE Trans. Image Proc. 1 (1992) 18–30.

[2] Bedford, T., Dekking, F. M., Keane, M. S., Frac-
tal image coding techniques and contraction oper-
ators, Nieuw Arch. Wisk. (4) 10,3 (1992) 185–218.

[3] Jacobs, E. W., Fisher, Y., Boss, R. D., Image
compression: A study of the iterated transform
method, Signal Processing 29 (1992) 251–263.

[4] Fisher, Y., Menlove, S., Fractal encoding with HV
partitions, in [9].

[5] Davoine, F., Antonini, M., Chassery, J.-M., Bar-
laud, M., Fractal image compression based on
Delaunay triangulation and vector quantization,
IEEE Trans. Image Proc. 5,2 (1996) 338–346.

[6] Novak, M., Attractor coding of images, Licenti-
ate Dissertation, Dept. of Electrical Engineering,
Linköping University, May 1993.

[7] Reusens, E., Partitioning complexity issue for iter-
ated function systems based image coding, in: Pro-
ceedings of the VIIth European Signal Processing
Conference EUSIPCO’94, Edinburgh, Sept. 1994.

[8] Thomas, L., Deravi, F., Region-based fractal image
Compression using heuristic search, IEEE Trans.
Image Proc. 4,6 (1995) 832–838.

[9] Fisher, Y. (ed.), Fractal Image Compression —
Theory and Application, Springer-Verlag, New
York, 1994.

[10] Saupe, D., Hartenstein, H., Lossless acceleration
of fractal image compression by fast convolution,
Proc. 1996 Intern. Conf. Image Proc. (ICIP), Lau-
sanne, Sept. 1996.

