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ABSTRACT

This paper proposes a new technique to build a background
memory based on mosaicking. More precisely, the technique
�rst identi�es background and foreground regions based on
local motion estimates. Camera motion is then estimated
on the background by applying a parametric global motion
estimation. Finally, after compensating for camera motion,
the background content is temporally integrated in long-
term memory. The method leads to high coding perfor-
mances and allows for content-based functionalities.

1. INTRODUCTION

E�cient integration and representation of the motion in-
formation is a key component in a video coding scheme.
For this purpose, this paper proposes a new technique to
build a background memory based on mosaicking. This
method leads to improved coding performances and sup-
ports content-based functionalities. Furthermore, it is broadly
applicable both in classical motion compensated block-DCT
video coding schemes as well as in object-based video cod-
ing schemes.

One of the most pertinent problem in video coding lies
in the coding of uncovered background areas. In this case,
the classical motion compensated prediction scheme is un-
able to predict newly appearing areas and hence leads to
poor performances. To overcome this problem, background
memory techniques have been proposed [1, 2]. More pre-
cisely, these techniques identify still regions as background
and stored them in a long term memory. Whenever an
area is uncovered, and providing that it has been visible in
the past, the information unavailable with classical predic-
tion techniques can be retrieved from the background mem-
ory. These algorithms are e�ective for video-conference and
video-phone sequences which are characterized by a still
background. However, the model of a still background does
no longer hold for more complex scenes which include cam-
era motion (e.g. pan or zoom).

In order to integrate temporal information, mosaic rep-
resentations [3, 4], also referred to as salient still [5], have
shown to be e�cient. Basically, these techniques estimate
the camera motion through global motion estimation and
align the images in the sequence by canceling the contri-
bution of camera motion. Then, the mosaic is built by
temporal integration of the aligned images. In this way,
the mosaic capture the information in multiple frames of a

video sequence. However, these methods are applied with-
out distinction between background and foreground, though
the camera motion is representative of the background mo-
tion only. Therefore, foreground objects appear blurred out.
Furthermore, as foreground objects are included in the mo-
saic representation, the problem of uncovered background
remains unsolved.

Taking into account the above considerations, this pa-
per combines the ideas of background memory and mosaic
representation. More precisely, it proposes a new technique
to dynamically build a mosaic of the background, where
the latter is now de�ned as the regions whose motion is co-
herent with the camera motion. Straightforwardly, as the
proposed technique compensates for camera motion, it over-
comes the shortcoming of the classical background memory
techniques. Furthermore, as the temporal integration is
performed on the background region only, the technique
outperforms classical mosaic representations.

This technique requires three main stages. A discrim-
ination is �rst made between background and foreground
regions based on motion information. Second, the camera
motion is estimated on the background by global motion
estimation. Third, using the camera motion information,
a dynamic mosaic of the background is progressively in-
tegrated and stored in a long term memory. Each of these
stages represents a challenging problem, and this paper pro-
vides also e�cient solutions to solve them.

Using the background mosaicking technique for video
coding allows for an e�cient integration and representation
of the motion information. More speci�cally, a two-way
motion compensated prediction is introduced. The current
frame can be predicted either from the background memory
using global motion estimates or from the previous frame
using local motion estimates. Therefore, this technique han-
dles to a large extent the problem of uncovered background.
Furthermore, the amount of side information required to
represent the motion information is greatly reduced due to
the compact parametric representation of camera motion.
Those gains are obtained without introducing any coding
delay, though an additional frame bu�er is required. The
method can be applied independently from the subsequent
coding technique. In particular, though the method is ap-
plicable in classical motion compensated block-DCT coding
schemes, it is also very appropriate for an object-based rep-
resentation of the scene. Finally, the method provides a
high resolution panoramic view of the background.



2. BACKGROUND MOSAICKING

As illustrated in Fig. 1, the proposed background mosaick-
ing technique is composed of the following steps: back-
ground/foreground segmentation, global motion estimation
on the background region, and dynamic mosaic representa-
tion of the background. These steps are now described in
more details.
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Figure 1: Background mosaicking.

2.1. Segmentation of background and foreground

The discrimination between background and foreground is
based on local motion information. A local motion vector
�eld is �rst estimated. A dominant motion is extracted by
a clustering of the motion vectors. Then, regions moving
according to the dominant motion are identi�ed as back-
ground, and otherwise as foreground.

Most naturally, the discrimination is based on the local
motion vector estimates. If a motion vector is close to the
dominant motion, the pixel locations characterized by this
motion vector are assigned to the background. However, in
low contrast areas, the local motion estimation is undercon-
strained and the resulting motion vectors are unreliable. In
this case, the above classi�cation based on motion similarity
may fail. To overcome this di�culty, the residual informa-
tion present in the prediction error is also exploited [6].
Namely, if, for an area, the residual obtained with the
dominant motion is similar to the one obtained when us-
ing the local motion vector, then this area is also assigned
to the background. In this way, low contrast areas where
motion estimation is unreliable can be robustly classi�ed
as background or foreground. The background/foreground
segmentation algorithm is summarized in Fig. 2.
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Figure 2: Background/foreground segmentation.

2.2. Camera motion estimation

After discriminating between background and foreground
regions, camera motion is robustly estimated on the back-
ground. In this way, the camera motion estimate is not
spoilt by the presence of outliers due to foreground objects
whose motion is not representative of the camera motion.

The camera motion is modeled by a parametric mo-
tion model. For this purpose, two models are widely used,
the a�ne model and the perspective model [7]. The a�ne
model is expressed as�

x0

y0

�
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�
a1 + a2x+ a3y

a4 + a5x+ a6y

�
; (1)

and the perspective model is given by�
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�
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where (x; y)T is the pixel location in the previous frame and
(x0; y0)T is the corresponding location in the current frame.

The 6-parameters a�ne model allows for the represen-
tation of the motion of a planar surface under orthographic
projection. However, it makes the assumption that the
depth map of the scene is small relative to the distance
to the camera. In order to relax this constraint, the 8-
parameters perspective model is rather used in this paper.
This model allows for the representation of the motion of a
planar surface under perspective projection.

In order to robustly estimate the motion parameters,
a matching technique is used [7]. This technique has been
shown to outperforms di�erential and linear regression tech-
niques [8]. The motion parameters ~a = (a1; : : : ; an) are
obtained by minimizing a disparity measure between the
region R in the current frame and the mapped region in
the previous frame

min
~a

X
~r2R

k I(~r; t)� I(T (~r;~a); t� 1) k ; (3)

where I(~r; t) denotes the image intensity at location ~r and
time t, T (~r;~a) is the location to be matched in the previous
frame.

The search is carried out in the n-dimensional param-
eters space. To decrease computational complexity, a fast
non-exhaustive search is carried out and the motion param-
eters are estimated progressively. First the translational
component is computed (i.e. a1 and a4), then the a�ne
parameters (i.e. a2; a3; a5 and a6), and �nally the perspec-
tive components (i.e. a7 and a8). Besides decreasing com-
plexity, this search strategy tends to produce more robust
estimates, as the translational component carries usually
more information than the other parameters which reduce
sometimes to little more than noise. However, this search
strategy obviously induces the risk to be trapped in a local
minimum.

Furthermore, the matching motion estimation algorithm
is applied on a multiresolution structure based on a Gaus-
sian pyramid. The �nal motion parameters at one level
propagate as initial estimates on the next level. This mul-
tiresolution scheme allows for the reduction of the compu-
tational load, as well as the prevention of local minima due
to the non-exhaustive search.



2.3. Dynamic mosaic of the background

Once the background has been segmented and the camera
motion estimated, the background information is tempo-
rally integrated by mosaicking. In [3], a distinction is made
between static and dynamic mosaics. The static mosaic
integrates the information of all the frames in a video seg-
ment (e.g. mean, median, weighted mean, weighted me-
dian). Conversely, the dynamic mosaic corresponds to a
progressive update of the mosaic content by gradually in-
tegrating the information of the individual frames. As the
static mosaic puts much more constraints on the video cod-
ing scheme (high coding delay, bu�ering of many frames),
the dynamic mosaic is rather considered in this paper.

To build the mosaic, the frames are aligned with re-
spect to a coordinate system. This coordinate system cor-
responds either to a �xed reference (e.g. the �rst frame or
a prefered view), or to a time-varying reference (e.g. the
current frame).

In the case of a �xed reference, the background region
of the individual frames are dynamically integrated in the
mosaic using the following update strategy

M(~r; t) = (1 � ��(~r))M(~r; t� 1) + ��(~r)I(T (~r;�a(t)); t) ;
(4)

whereM(~r; t) denotes the dynamic mosaic at location ~r and
time t, �ta(t) is the sum of the global motion parameters
obtain pairwise between consecutive frames over the time
period between the reference and the current frames, � is a
weighting factor such as � 2 [0; 1], and �(~r) = 1 if ~r belongs
to the background and 0 otherwise.

Very similarly, in the case of a time-varying reference
corresponding to the current frame, the mosaic update be-
comes

M(~r; t) = (1� ��(~r))M(T (~r;~a); t� 1) + ��(~r)I(~r; t) : (5)

The parameter � controls the update of the mosaic, it
can be adapted on the y. For instance, if a measure of the
reliability of the global motion estimation is available (in
our case the matching error), � can be decreased (respec-
tively increased) when the estimate is unreliable (respec-
tively reliable).

When the sole goal of the background mosaicking tech-
nique is to achieve better motion compensated prediction,
Eq. (5) leads to higher performances as it remains closer
to the frame to be predicted. However, when a panoramic
view of the background from a speci�c view point is desired,
Eq. (4) has to be prefered.

2.4. Application to video coding

In the framework of coding, the background mosaic allows
for a two-way motion compensated prediction as illustrated
in Fig. 3. For instance, in a motion compensated block-
DCT scheme, each block of the background can be predicted
either from the background mosaic (using global motion)
or from the previous frame as in the classical scheme (using
local motion), depending on which predictor leads to the
lower prediction error. This way, uncovered background ar-
eas can be retrieved from the background mosaic providing
that they have been visible in the past.
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Figure 3: Two-way prediction.

Furthermore, the parametric global motion estimation
e�ciently handles camera motion such as panning and zoom-
ing, resulting in a reduced motion side information. Finally,
the process of integrating many frames in the mosaic is �l-
tering the noise in the sequence, leading to better predic-
tion.

Besides, the background mosaic may also be used to
construct an arti�cial high resolution panoramic view of
the background similarly to [9].

3. EXPERIMENTAL RESULTS

Experimental results are presented in this section. Two se-
quences in CIF format have been used. Fig. 4 shows a frame
of the sequence \Stefan" which is characterized by large
camera motion (pan and zoom), the dynamic background
mosaic after integrating 200 frames, and the gain obtained
on the prediction when using background mosaicking and
two-way motion compensated prediction. Fig. 5 shows sim-
ilar results for the sequence \Weather" which is composed
of a still background and a moving foreground object. In
the above results, the mosaic has been build using Eq. (5).
As far as the interframe prediction is concerned, a classical
block matching motion estimation has been used, with a
block size of 8 � 8 pixels, a maximum displacement of �25
pixels, and half-pel accuracy.

It can be observed that the method generates a panoramic
view of the background where foreground objects have partly
disappeared. In terms of prediction, the proposed method
leads to an average gain of approximately 1dB on both se-
quences, with peaks up to 2dB and 4dB.

4. CONCLUSION

This paper described a new technique to incrementally in-
tegrate frames in a background mosaic. Simulation re-
sults have shown that the method leads to signi�cantly
better performances in a motion compensated video cod-
ing scheme. The technique provides also a panoramic view
of the background.
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