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SEGMENTING MODULATED LINE TEXTURES WITH S-GABOR FILTERS
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Department of Computer Science
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Heslington
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ABSTRACT

This paper describes a novel technique for segment-
ing frequency modulated line-textures. Textures of this
sort abound in nature and are typified by growth pat-
terns in which the deposition rate varies over time.
The basic 1dea underpinning the technique is to use the
S-Gabor kernel as a frequency modulated channel re-
sponse function. According to this channel model, the
central frequency changes exponentially with distance
from the centre of the kernel. In order to segment the
resulting texture response, we use fuzzy clustering to
locate peaks in the Fourier power spectrum. In this way
we estimate both the centre-frequency and the modula-
tion parameters of the filter bank. We illustrate the
effectiveness of our technique on the segmentation of
growth patterns on fish scales.

1. INTRODUCTION

Gabor filters have been widely exploited to compute
a multi-channel representation of the raw image data
in the characterisation not only of edge and line fea-
tures, but also of regular texture [1, 2]. The Gabor
function serves well as a channel model when the fea-
tures to be detected are regular in width, orientation,
phase and frequency. However, if the target features
are more complex then a more sophisticated channel
model is required. One example of such a situation is
provided by textures which rather than having a reg-
ular spatial frequency, exhibit frequency modulation.
Examples from nature are common, especially where
deposition rates (of bone, wood or sediment) vary over
time (seasonal, diurnal or geological). Of particular
interest for the application in hand is the detection of
growth patterns in fish scales. Here growth-lines are de-
posited with a spatial frequency which varies with time
(see figure 1). The characterisation of these patterns
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requires either a very dense disposition of frequency
channels or a frequency-modulated channel model.
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Figure 1: Part of a fish scale.

If modulated textures are to be segmented, two
problems need to be solved. Firstly, a wavelet basis
function needs to be found that can represent frequency
modulated textures. Since they are associated with a
fixed central frequency, the standard Gabor functions
are unsuitable since a large number of filters must be
deployed to cover the required frequency range. It is
for this reason that we turn to the frequency modu-
lated S-Gabor kernel [3]. This filter differs from its
canonical Gabor counterpart by virtue of the fact that
the centre-frequency undergoes exponential decay with
a predefined amplitude and lifetime. With a suitable
filter-basis to hand, the second requirement is for an ef-
fective means of estimating the parameters of the mod-
ulation function. In our texture segmentation applica-
tion, this involves determining the range of frequencies
which are present in the modulated line patterns. Be-
cause of the uncertainty and potential overlap of peaks



in the power spectrum, we opt to use a fuzzy clustering
technique.

2. S-GABOR FILTERS

The S-Gabor function recently suggested by Heitger et
al [3] modulates the central spatial frequency v of its
Gabor counterpart through a process of exponential de-
cay. If z and y denote the spatial co-ordinates, then the
so called S-Gabor functions with horizontal orientation
having spatial width w are as follows

Cow(w,y) = exp[—%(% + ) cos2mvat(z)] (1)
Sow(z,y) = exp[—%(% + %)] sin2rvay(z)]  (2)

The modulating function imposes an exponential
attenuation on the spatial frequency

P =1-k(i—ep[22]) @

T

A cosine-phase S-Gabor filter tuned for line-texture
segmentation is shown in figure 2

Figure 2: S-Gabor filter. v = 0.15, wy; = 9, A = 1 and
k=03

The spatial scale w of the Gabor function and the
decay constant A are effectively determined by the width
of the line structures that constitute the texture pat-
tern. Our texture segmentation problem therefore re-
duces to one of estimating the central frequency v and
the attenuation amplitude k.

3. FUZZY CLUSTERING OF THE
FOURIER POWER SPECTRUM

Examples of frequency domain texture analysis are
provided by Bovik [4] and Tan [5] who search the Gabor
Power Spectrum. The basic idea is that peaks corres-
pond to the centre-frequencies and orientations of the
dominant image textures. Peaks formed by regular line
textures are clear and spike-like in comparison with
the more vague peak formed by frequency-modulated

textures (see figure 3), which makes robust identifica-
tion of the peak more difficult. Moreover, the width
of the peak can provide information about the range
of frequencies in the texture. Because it is tailored to
locating only the modes of compact peaks in the power-
spectrum, the algorithm adopted in [5] is not appropri-
ate for our application involving frequency modulated
textures. Instead we require a means of determining
both the centres and widths of diffuse structures in the
Gabor power spectrum.

Figure 3: Power Spectrum of the image in figure 1.
The range of circulus frequencies is represented by the
width of the peak

It is for these reasons that we require more soph-
isticated means of learning the structure of the Gabor
power spectrum. Specifically, the novelty of the work
presented here resides in the use of fuzzy clustering to
compute not only the central frequencies v of the filters,
but also their associated modulation parameter k. We
use the Gustavson Kessel Fuzzy Clustering (GKFC)
algorithm [6] to label the peak which represents the
growth-line frequency range in the power spectrum.
Our requirements in locating peaks in the power spec-
trum are to be able to specify a prior: the acceptable
density of significant clusters and to be able to assign ir-
relevant structure to a background (or noise) category.

3.1. Gustavson-Kessel Algorithm

The idea of specifying the weight of membership
(between 0 and 1) of a data point to two or more
clusters imposed on the data set is central to fuzzy clus-
tering. The membership of each datum i to a cluster j
is proportional to some measure of distance d; ; to the
centre of that cluster. Suppose that X = {x;|j = 1..N}
is a set of N data points. If the dimensionality of
the parameter space is n then each member of the
data-set x; is an n-dimensional measurement-vector.
V = {v;]i = 1..C'} is a set of cluster centres v; in the n-
dimensional parameter space. The fuzzy class member-
ship weights are determined by the set of distances d; ;
between the data points and and the cluster-centres.
The fuzzy-memberships are recorded in the C' x N



matrix U = [u;;]. For each datum, the membership-
weights sum to unity over the set of clusters, i.e.

C
D uy=1 forall j=1.N (3)

i=1
Fuzzy clustering is an iterative process whose goal
is the minimization of the following objective function:

J(U,V:X) = ZZ (uij)™d* (x5, Vi) (4)

i=1j=1

where m 1s a constant known as the “fuzzifier”. The
algorithm proceeds as follows:

Gustafson-Kessel Fuzzy Clustering

Fiz C, the number of clusters 2 < C < N. Fiz m,
the fuzzifier m € (1,00). Fiz the C' volume constraints
p € (0,00). Initialise U and V. Set iteration counter
l=1.

REPEAT

Calculate fuzzy scatter matrices S with U,V and

n

S; = Z (Uir)™ (x5 — vi) (x — Vi)T (5)

k=1
Calculate inverses and determinants of each S
Calculate the norm-inducing matrices A:

A = [pidet(Si)]=(S7 1),

(3

1<i<C (6)

Update U using V,
distance d;, = |x; — v;|Aj|x; — vi|" and

Uik —

- ™)

1
i (§2) 7]

Update V with U and

o — k=t (uin) "Xy
T o (i)™

for all ¢ (8)

Increment [

UNTIL

UHD Uyl < e (9)

Before proceeding to describe our texture segmenta-
tion method, 1t is worth commenting on some of the

advantages of our fuzzy-clustering strategy. In the first-
instance, since we specify the maximum acceptable dens-
ity of clusters, we do not need to perform any separate
cluster merging. A single cluster prototype was capable
of describing all the data points in the target cluster
because of the underlying ellipsoidal distribution.

4. EXPERIMENTS

Our interest in segmenting modulated line textures ori-
ginates in the analysis of patterns on fish-scales. Fish
age can be estimated by counting the number of bunches
of closely-spaced growth rings on their scales. These
bunches are called annuli because they are formed once
a year as the fish lives through a winter. In figure 1, an
annulus runs across the centre of the image. At present,
annuli are identified manually, but the development of
an automated system would be of great assistance to
fisheries management.

The methods outlined above were used to identify
annuli in fish scale images as follows. The Fourier
power spectrum of a fish scale image was computed.
This was segmented using the GKFC algorithm. A
three- cluster partition was imposed on the power spec-
trum, two of which were used to capture high and low
frequency noise features. The frequency range was de-
termined from the width of the modulation-peak. An
example of a partition is shown in figure 4. Identific-
ation of the frequency width is robust, even though a
few pixels that are not part of the modulation-peak are

mis-labelled.

Figure 4: A segmented power spectrum

For each v, the maximum and minimum values of
the frequency attenuation parameter k could then be
determined. Suppose that v, 1s the maximum ex-
tent of the Gabor-peak of frequency v and v, is the
minimum extent. For any value of v between these lim-
its, the minimum value of the attenuation parameter is

(v—vmax)
v

equal to kpyin = while the maximum value is

equal to kpqp = (”‘l;i"”")
Since the spatial frequency of growth lines on fish

scales does not fluctuate evenly between vy and vimin,



we selected four values of v set to divide up the fre-
quency width equally. For each v, two filters were spe-
cified, one with k = k,,,,, and one with k = k,,,;,,.

Figure 5: (a) Test image and (b) segmentation using

S-Gabor filters

Segmentation of the fish scale image is achieved by
applying a filter bank to the raw image data and de-
termining the most significant channel response. Each
pixel is characterised by a vector whose elements are
the set of channel filter responses. The mean class-
vectors for annuli and background pixels are computed
using the contents of the fuzzy clusters located in the
training data. We assign image pixels to texture class
which minimises the Mahalanobis distance.

5. CONCLUSIONS

We have demonstrated how fuzzy clustering can be
used to identify regions of interest in power spectra
of textured images. Fuzzy clustering allows unsuper-
vised texture segmentation of more complex images
than those specified by Bovik. We have demonstrated
that more detailed analysis of the power spectrum is
one way to design a more powerful Gabor filter-bank.

The efficiency of a multi-channel segmentation al-
gorithm is dependent upon the number of channels in
the filter bank. Where the segmentation is used to dis-
criminate between textures which differ only by a very
small (unknown) change in spatial frequency, methods
such as those described by Tan [5] or Bovik [4] would
require a large number of canonical Gabor filters to
guarantee discrimination. The nature of power spectra
of modulated texture images is such that conventional
peak finding is of only limited success in determining
the frequency range. Efficiency is not the only poten-
tial advantage that S-Gabor filters offer over canonical
Gabor filters. In our application example, it is local
minima which characterise regions of interest - not the
frequency per se. S-Gabor filters can be tuned to detect
such features.
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