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ABSTRACT

This paper presents a vision model for moving pictures. The
model is an extension of a normalization model by Teo and
Heeger. It accounts for normalization of the cortical recep-
tive �eld responses and inter-channel masking. The model
is compared with a simpler vision model for video by pre-
senting results on quality assessment of MPEG compressed
video.
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1. INTRODUCTION

There has been a strong interest over the past years in vision
models and applications of vision science in image proces-
sing. This interest comes from the fact that the modeling of
vision permits to predict the visibility of patterns, which is
of interest to many applications such as image quality asses-
sment [8], image coding [13] or display device design. Vision
models have been mainly developed for still picture applica-
tions. Recently, a model for moving pictures has been pro-
posed [10] for applications in a video coding framework [12].
The model relies on a simple modeling of the cortical recep-
tive �elds. Vision scientists have proposed nonlinear models
of early vision that accounts for contrast normalization in
the cortical neurons responses [4, 8, 9]. They showed that
such models perform better compared to simpler modeling
of early vision. This work presents an extension of such a
still-picture model so as to be applicable to moving pictures.
The model by Teo and Heeger [8], that is being extended
here, is reviewed in Sec. 2. Section 3 presents the spatio-
temporal normalization model and Sec. 4 presents results
of the distortion metric obtained with the model. Finally,
Sec. 5 concludes the paper.

2. THE TEO-HEEGER MODEL

Models of early vision attempt to predict the responses of
the neurons in the primary visual cortex (termed area V1).
Such modeling is based on the following properties:

� The visual system uses the relative contrast as the repre-
sentation of the information.
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� The visual information is represented at various scales
and orientations. Psychophysical experiments give evi-
dence for the existence of separate detection mechanisms
in the brain, which is con�rmed by the measurements of
band-pass responses from the cortical cells. The por-
tion of the frequency domain that a mechanism covers is
called a channel.

� The sensitivity to contrast is a function of the frequency
and the orientation. This function is termed the contrast
sensitivity function (CSF).

� The adaptation to the local contrast of the background,
i.e. visual masking.

A model of visual masking that is commonly used has
been proposed by Legge and Foley [5]. It sums excitation li-
nearly over a receptive �eld. The formulation assumes that
visual masking can only occur between two stimuli that be-
long to the same channel. Such modeling has been contra-
dicted by experiments carried out by Foley and Boynton on
simultaneous masking of Gabor patterns by sinewave gra-
tings [3]. In these experiments, target contrast thresholds
were measured as a function of the masker contrast, orien-
tation, spatial phase and temporal frequency.

A very important result of their study is the e�ect of
masker orientation on the threshold curves. A conclusion is
that there exists some inter-channel masking and that this
phenomenon can be signi�cant. An illustration of the ty-
pes of measurements that they obtained is given in Fig. 1.
Consider two stimuli, a masker and a target. Let CT0 de-
note the detection threshold of the target measured in the
absence of a masker (i.e. given by the CSF),CT be the dete-
ction threshold of the signal in the presence of a masker and
CM be the contrast of the masker. If the masker and the
target have the same orientation, the diagram of masking
looks like the one depicted in Fig. 1, left hand side. There
is a region, for CM < CT0, where the masker has no in
u-
ence on the perception of the target. For CM > CT0, the
detection contrast for the target grows exponentially with
the contrast of the masker (i.e. detection of the target is
harder). When the contrast of the masker and the target
are very close one to the other, the curve presents a dip-
per. This means that, at this value of contrast, the masker
actually helps detection of the target (this is known as the
facilitation e�ect). When the target and the masker di�er



in orientation, the detection curve looks as the one depicted
in Fig. 1, right hand side. The di�erence with the previous
case is that the curve does not present a dipper around
CM = CT0, i.e. there is no facilitation e�ect.

On the basis of his modeling of the cat cortical cell's
response [4] and the data from Foley and Boynton, Heeger
proposed with Teo a �delity metric for still pictures [8, 9].
The model is based on four building blocks: a front end
linear transform, a squaring of the transform coe�cients, a
normalization stage and a detection stage.

ε

log CT

Mlog C

T0C

T0C

ε

log CT

Mlog C

T0C

T0C

Figure 1: Detection contrast curve for a target in the pre-
sence of a masker. Left hand side: the masker and the target
have approximately the same orientation. Right hand side:
the masker and the target have di�erent orientations.

The linear transform stage decomposes the image into
perceptual channels. It is implemented with hexagonally
sampled quadrature mirror �lters or cosine �lters in [9] or
the steerable pyramid [7] from Simoncelli et al. in [8]. The
coe�cients at the output of the linear transform are squa-
red and normalized. Since the output coe�cients of the
transform linearly increase with the input magnitude, it is
desirable to restrict the output to a certain dynamic range
(as it is the case in an actual system like the cortex). Let A�

be a coe�cient of the output of the linear transform having
orientation �. The normalized output for the coe�cient,
R�, is computed by Eq. (1):

R
� = k

�
A�
�
2

P
�
(A�)2 + �2

; (1)

where � ranges over all orientations, k's is a global sca-
ling constant and �'s a saturation constant. Pooling is only
performed across orientations and not across spatial frequ-
encies as inter-channel masking is restrained to channels
having the same frequency [3]. The values for constants
k and � have been obtained by �tting the model to Foley
and Boynton's data. In this formulation, the presence of
the dipper in the masking curve can be quite simply expla-
ined. If the masker and the target have approximately the
same orientation, a contribution at that orientation appe-
ars both in A� and one A�, decreasing the value of R�. On
the contrary, when both signals have di�erent orientations,
there is no simultaneous contribution to A� and an A�.

Finally, a detection mechanism predicts how di�erent
two images may look. Assume that Ro is a vector gathering
all the sensors outputs computed by Eq. (1) for an original

image and Rd is the equivalent vector for a distorted version
of the considered image. The distortion measure is compu-
ted as the squared error norm of the di�erence between Ro
and Rd as: �R = jRo � Rdj

2
.

3. SPATIO-TEMPORAL NORMALIZATION

MODEL

The Teo-Heeger model has been extended to account for
spatio-temporal perception. In order to do this, a spatio-
temporal decomposition has to be obtained along with va-
lues for the normalization equations constants. The decom-
position is chosen to be time-space separable as in [10,11].
This can be done if the contrast sensitivity function is kept
non separable in space and time to account for spatio-
temporal interactions. The spatial �lterbank is kept as in
the Teo-Heeger model, i.e. it is the steerable pyramid [7].
The pyramid splits the data into four spatial frequency
bands and four orientation bands.

10
0

10
1

10
−1

10
0

Temporal frequency (Hz)

M
ag

ni
tu

de

Figure 2: Comparison of the magnitude of the frequency
responses of the temporal bank of [10] (solid line) and the
proposed IIR �lterbank (dashed line).

A temporal �lter bank is proposed. The main con-
straint that has been imposed when designing it is low delay.
Some applications that would use a perceptual decomposi-
tion may require very fast response from the model. Consi-
der for example a bu�er regulation scheme for an encoder.
The quantization parameter has to be adapted as a function
of the desired quality and occupancy of the output bu�er.
Such decisions have to be made as quickly as possible. For
this reason, no subsampling operation is performed along
the temporal direction. This was chosen so as to have as
much degrees of freedom as possible in designing the tem-
poral �lterbank. The bank also has to approximate the two
mechanisms of temporal vision, that are termed sustained

and transient. Doing so with �nite impulse response �l-
ters (FIR �lters) may require �lters having as much as 6
to 8 taps, which is a too long delay. Therefore in�nite im-
pulse response (IIR) �lters have been chosen to implement



the temporal decomposition. A maximum delay of 3 fra-
mes has been imposed. Such a delay is reasonable as many
implementations of actual coders, namely MPEG coders,
have such delays.

The �lters have been designed by minimizing the dif-
ference between their frequency response and the response
of the �lter used in [10] in a least square sense. The op-
timization procedure yielded a low pass �lter that has one
pole and one zero. This �lter approximates the sustained
mechanisms. The transient mechanism is approximated by
a �lter with 3 poles and 2 zeroes. Finally, a third �lter is
designed to yield the high pass residue (so as to have an in-
vertible transform). This �lter added to the sum of the two
others yields a 
at response. All �lters are listed in [6]. The
low pass and band pass �lters are presented in Fig. 2. The
values for the constants k's and �'s have been obtained by
simulating a target at threshold contrast. For this stimuli,
the sum of the output of all sensors should equal unity. The
contrast sensitivity function experimentally obtained in [11]
has been used for this purpose.

4. PERCEPTUAL DISTORTION METRIC

The proposed model has been used to design a metric for
moving pictures termed the normalization �delity metric

(NVFM). In this metric, the output of the detection stage
�R is further mapped onto the 1 to 5 quality scale de�ned
by CCIR Rec. 500 [2]. In this scale, 1 is the worst quality
and 5 the best. The mapping uses the following function,
relating the error measure to the quality index Q:

Q =
5

1 +N�R
;

where N ensures a mapping between 1 and 5 and is com-
puted on the basis of the vision model as in [12].

Results of quality assessment on compressed video for
broadcasting are now presented. The considered coder is
the MPEG-2 standard operating in MP@ML (main pro�le,
main level) and HP@ML (high pro�le, main level). Two
classical test sequences for broadcasting applications have
been used for the simulations. They are Mobile & Calendar

and Basket Ball. The sequences have been encoded with the
software simulator of the test model 5 of MPEG-2 supplied
by the MPEG Software Simulation Group as interlaced vi-
deo, with a constant group of pictures structure of 12 frames
and 2 B-pictures between every P-picture. The video buf-
fer veri�er size was set to its maximum allowed size. The
dimension of the search windows for motion estimation was
15 pixels for P-frames, 7 pixels for backward motion estima-
tion in B-frames and 3 pixels for forward motion estimation
in B-frames. The coder operates in constant bitrate (CBR)
mode. Coding has been performed on the range of bit rates
that MPEG-2 typically addresses. The coding quality of
the sequences Mobile & Calendar and Basket Ball has been
assessed by NVFM and is compared with the moving pictu-
res quality metric (MPQM) introduced in [12]. The results
are respectively presented in Fig. 3 and Fig. 4. The general
behavior of the curves indicates a rapid increase in quality
at low to medium bitrates and a saturation at higher bitra-
tes. The shape of the NVFM curves is signi�cantly di�erent
from the MPQM curves in that their dynamic range spans

a much larger range in quality. The �rst portion of the
NVFM curves exhibits a steep limb. According to NVFM,
the increase in quality in the lower range of bitrate is very
fast, and a slight increase of bandwidth can result in a very
signi�cant increase in quality. It is interesting to note that
saturation occurs roughly at the same bitrate value for both
metrics.
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Figure 3: Comparison of NVFM, MPQM and subjective
data for Mobile & Calendar as a function of the bitrate.

The metric is also compared with some available sub-
jective data. The data has been collected by the research
center of RAI, Italy [1] and consists of subjective rating of
compressed video by human observers. The data has been
collected according to CCIR Rec. 500-3. The method is
a double stimulus continuous quality scale (DSCQS). The
subjects are presented pairs of sequences. Each pair con-
sists of versions of the same sequence (i.e. the sequences
are chosen between the various compression ratios and the
original). The observer has to assess the quality of both se-
quences on a scale that is similar to the CCIR quality scale.
The subjective data has thus to be adapted to the purpose
of this experiment. Both the original and the compressed
sequences are given a vote in the DSCQS task. The percep-
tual metrics, on the contrary, try to predict how di�erent
two sequences may look. The output of the metric is always
a distance between the distorted sequence and the original.
Hence the data from [1] has been used as follows. Each
result has been normalized with respect to the original and
the distance between the two subjective votes used to de-
duce an error bar.

Figure 3 presents the curves of the three metrics for
the sequence Mobile & Calendar along with the tentative
mapping on the subjective data. It can be seen that the
subjective data is pretty noisy since the ratings at 4 and
6 Mbits/sec. are nearly identical. The metric curves show
however a behavior that is consistent with the data. Fi-
gure 4 presents the same results for the Basket Ball sequ-
ence along with the performance of the ITS metric. This
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Figure 4: Comparison of NVFM, MPQM and subjective
data for Basket Ball as a function of the bitrate.

metric is the only alternative metric for moving pictures and
is described in [14]. The subjective data seems less noisy
in this case. This data show particularly well the two phe-
nomena discussed before, namely the increase of perceived
quality with the bandwidth in the lower range of bitrates
and a saturation e�ect at higher bitrates. Both metrics
exhibit a behavior that is consistent with the data. The
NVFM realizes a better match with the data than MPQM.
In particular it accounts better for the rapid increase of qua-
lity below 7-9 Mbits/sec. As the NVFM models more as-
pects of vision than MPQM (namely inter-channel masking
and normalization), one could expect that its performance
would be better. The ITS metric on the contrary is not
consistent at all with such data as shown in Fig. 4.

5. CONCLUSION

A �rst vision model for moving pictures applications has
been proposed recently. In this paper, a more advanced mo-
del is presented. The new model o�ers several advantages
compared to the previous one, namely a better modeling of
the cortical cells responses and a more e�cient implemen-
tation. The proposed model is an extension of the work by
Teo and Heeger. Two quality metrics for moving pictures,
derived from the two di�erent models are used to assess the
coding quality of MPEG-2 video streams. The new model
proved to yield a better quality rating than the old one.
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