TRANSFORM CODING USING ADAPTIVE BASES AND QUANTIZATION

Vivek K Goyal, Jun Zhuang, Martin Vetterli, and Christopher Chan

Dept. of Electrical Engineering and Computer Science
University of California, Berkeley

{vkgoyal,zhuang,martin}Qeecs.berkeley.edu,wychan@engr.sgi.com

ABSTRACT

This paper considers the problem of universal transform
coding based on estimating the Karhunen-Lo&ve transform
from quantized data. The use of quantized data in the
estimation allows the encoder and decoder to maintain the
same state without any side information. A theorem is pre-
sented that proves, under certain conditions, that consistent
estimation of all the required moments is possible from uni-
formly scalar quantized data regardless of the quantization
coarseness. This consistent estimation requires the solution
of nonlinear equations. Very simple approximations that
avoid these nonlinear equations are used to develop a pra-
ctical adaptive coding technique. Promising experimental
results obtained with this method are presented.

1. INTRODUCTION

Although there are many popular and effective adaptive
lossless compression methods, such as Lempel-Ziv coding
[1}, dynamic Huffman coding [2], and arithmetic coding [3],
there are no adaptive lossy compression methods with such
universal acceptance. A primary reason for this disparity is
computational complexity: While asymptotically optimal
universal lossy compression schemes have been presented
in the literature, these schemes suffer from high complexity
because they depend on high dimensional vector quantiza-
tion. One way to limit complexity, as is pursued here, is to
limit all quantization to scalars or vectors of fixed, relatively
small, dimension.

This paper approaches the problem of universal lossy
coding by considering various adaptive schemes that requ-
ire no offline training. A basic requirement for an encoder
to achieve universality is for it to “learn” the statistics of
the unknown or time-varying source. The standard way
to make a coding system adaptive is to, given a block of
data, use the data (and perhaps prior blocks) to develop
a model of the source and design an encoder optimal for
the source prior to coding the data. In order for the re-
ceiver to correctly decode the data, it must be informed
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of the adaptation of the encoder; hence the parameters of
the encoder are sent along with the coded data. The main
sources of performance degradation compared to an opti-
mal “omniscient” source coder are modelling error and the
cost of sending encoder parameters to the receiver. This
work has a fundamentally different spirit. . It asks, “How
well can one do without sending any encoder parameters
to the receiver?” For the receiver to be able to correctly
decode the data without being explicitly informed of the
encoder state, it is necessary that all encoder adaptation
depend only on information already available at the deco-
der at no additional cost, i.e. the coded data stream. In
the parlance of communication, we are avoiding side infor-
mation, or using backward adaptation. With this strategy,
one avoids the price of side information but the efficiency of
estimating source statistics is reduced. Also, there is some
performance penalty from the requirement that adaptation
be strictly causal.

A method for adaptive scalar quantization without side
information ([4],[5]) is reviewed and generalization to vector
quantization (VQ) is discussed. For adaptive VQ, a scheme
using some side information is also presented [6]. The bulk
of the paper addresses the issue of adaptive transform co-
ding. It is shown that the transform (and, as above, the
scalar quantizers) can be adapted based purely on past qu-
antized data to give an optimal universal transform coding
system. Simpler suboptimal systems (which still require no
side information) and experimental results are also presen-
ted.

2. ADAPTIVE SCALAR QUANTIZATION
WITH NO SIDE INFORMATION

A straightforward way of improving a transform coding
system is to improve the performance of its scalar quan-
tization. One systematic way to achieve adaptivity is to
assume a parametric signal model, estimate the model pa-
rameters, and design the quantizer accordingly. In light of
the desire for backward adaptivity, we would like to know
how coarsely the data can be quantized and still allow mo-
del parameters to be determined. The answer was described
first in [5] and is summarized below.

Let X have a parametric p.d.f. fg, 9,,....6, (). Let —oo =
bo < b1 < ... < bat1 oo and denote the probability
of X assuming a value in the ith bin [b;,b;y1) by F; =

fbb:“ fo1,00,...0,(x)dz, i = 0,...,n. Neglecting degeneracy

conditions, if n > k, then the parameters 61, 6a, ..., 0; can



be determined from the bin probabilities Fy, Fy, ..., Fy.
If the bin probabilities are only approximately known or
if the parametric p.d.f. model is not exact, the parameters
can be estimated using an appropriate fitting criterion.

In general, this approach will lead to a nonlinear system
of equations relating the parameters and bin probabilities.
Ortega and Vetterli [4] proposed using a continuous, piece-
wise linear model for the signal p.d.f. This method is parti-
cularly practical because it yields a tridiagonal linear system
relating the parameters and bin probabilities. In addition,
the performance is quite good even when the source p.d.f.
can not be closely approximated by a piecewise linear fun-
ction [5].

3. ADAPTIVE VECTOR QUANTIZATION

3.1. Adaptive VQ with no side information

One approach to backward adaptive VQ is to simply extend
the ideas of the previous section. It is interesting to note
that even very coarse scalar quantization can yield eno-
ugh information to fit a reasonable parametric model. For
example, quantizing with only three bins will yield 3% — 1
independent probability estimates, where k is the vector
dimension. For any k € Z%, 3* —1 > £k* + £k, so this
quantization is fine enough to fit a multivariate Gaussian
signal model.

This approach has not been pursued because of com-
putational complexity. The complexity of parameter esti-
mation depends on the parametric model itself, which is
not necessarily prohibitively complicated in the vector case.
The difficulty stems from the fact that even given a para-
metric source model, the design of good vector quantizers
is very complicated. One lower complexity alternative to
adaptive V(Q is presented in the following subsection.

3.2. Dictionary-based Adaptive VQ

Given the difficulty in designing vector quantizers based on
parametric source models, iterative approaches have nor-
mally been taken for this purpose. As an alternative, [6]
presented a one-pass technique for VQ codebook constru-
ction and adaptation for individual source signals. The
technique, called rate-distortion Lempel-Ziv (RDLZ), is an
effort to extend the Lempel-Ziv algorithm to a practical
universal logsy compression algorithm. A source signal is
quantized using a VQ codebook, which in turn is modified
during the quantization process. Adaptation is achieved
without iteration on any particular segment of the source
signal, but by accumulating source statistics as encoding
proceeds. Side information must be transmitted since co-
debook adaptation, such as adding or moving code vectors,
cannot be inferred otherwise. Determination of the amount
of side information transmitted is based on a rate-distortion
criterion. Fig. 1 shows a portion of a composite image coded
with RDLZ (from top to bottom). It is apparent that after
the transition from Barbara to text, the codebook adapts
to become more appropriate for text.

1Since T OF=1, only n of the n+1 F;’s are independent.
=0
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Figure 1: RDLZ coding of a composite image.

4. ADAPTIVE TRANSFORM CODING WITH
NO SIDE INFORMATION

4.1. Exposition

The study of adaptive transform coding has been a rich re-
search area for several years. Recently, very good transform
coding results have been reported using classification based
methods, i.e. schemes in which the signal space is divided
into a finite set of classes and a fixed transform is designed
for each class [7]. Classification methods generally rely on
training for defining classes and/or designing a- transform
code for each class. In this paper we consider only methods
that do not rely on a priors training.

The optimality of the Karhunen-Logve Transform (KLT)
for transform coding of a stationary source under high re-
solution and arbitrary real bit assignment assumptions is
well known [8, §8.6]. Adaptive versions of KLT coding
are not widely used because in traditional adaptive systems
(with side information) transmission of the KLT coeflicients
can be prohibitively expensive.> By advocating a backward
adaptive KLT, we completely avoid performance penalties
associated with side information. Instead, there is a poten-
tial for performance degradation due to noise in estimating
signal statistics.

The following theorem establishes the feasibility of back-
ward adaptive KLT coding for a Gaussian source.
Theorem 1: Let X = [X4,...,X%]T, X ~ N(0,X), where
3 is an unknown matrix with positive diagonal. Let X be
a scalar quantized version of X such that for n € Z either

(1) X € [nAg, (n+1)A) = X = (n+ $)A; or

2In practical adaptive transform coding system, 20 to 40 per-
cent of the available bit rate is assigned to side information [9,
§2.3].



Then for any set of positive, finite quantization step sizes
Ai, ..., Ag, all moments of X can be recovered exactly
from the first and second order moments of X.
Proof: Since the quantization of X is in an infinite number
of bins, we could proceed as suggested by §2. Instead, we
follow a more explicit strategy which yields relationships of
independent interest. For simplicity, the proof below con-
siders only case (i); case (ii) is similar. First note that
since X is a Gaussian random variable, all its moments
can be expressed in terms of its first and second order mo-
ments. Having already specified that X has mean zero, it
is completely characterized by o;; = E[X;:X;], 1 <4,j <k.
(Similarly denote E[X;X;] by &i; and o; by ¢2.)
Simplifying expressions from [10] relating the moments
of a signal and its uniformly quantized version gives

022 2/A2 2
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For any positive A;, (1) describes a monotonic relationship
between o7 and &7, so each o7 can be determined from 7.
With the o;’s thusly determined, (2) describes a monotic
relationship between o;; and &ij, so the oi;’s can similarly
be determined. O

Before discussing the application of Theorem 1 to KLT
coding, it is worthwhile to cornment on (1). It shows, reas-
suringly, that as A; — 0, 7 — a7. Also, as A;/o; — oo,
0[62]/8[0?] = 0. This reflects the intuitive idea that reco-
vering o7 in a numerically stable manner is dificult when
A;/o; is very large, i.e. the quantization is extremely co-
arse. Similar conclusions can be drawn from (2).

Applying Theorem 1 to recover the moments of the un-
quantized signal involves finding the roots of (1) and (2).
This is clearly very complicated, but may be simplified by
the fact that, as long as the A/s’s are not too large, the
sums can be approximated by a few terms. Furthermore, for
a reasonable range of quantizer step sizes, the relative error
incurred by replacing (1) and (2) by very simple approxi-
mations is small. Consider replacing the bracketed term in
(1) by = and replacing (2) by 6i; & 04;. The relative errors
in makmg these appr0x1mat10ns are shown in Fig. 2. It is

assumed that &i ﬁi and o;; = 0i0;j. 3
Ti
The expenmental results presented in the final subse-
ction are for a system that does not use the corrections sug-

gested in the proof of Theorem 1. This is partially justified

3This value of oy; maximizes &y;.
maximize the relative error.

Naturally ¢;; = 0 would

)
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Figure 2: Relative errors in variance and covariance estima-
tes induced by replacing (1) and (2) by simple approxima-
tions. (i. and é. refer to the quantizer types in Theorem 1.)

by Fig. 2, but furthermore by the fact that finding a good
estimate of the KLT for a source does not necessarily requ-
ire a good estimate of its covariance matrix.* The following
theorem provides a situation where the KLT estimated di-
rectly from quantized data will be a consistent estimate of
the KLT of the unquantized source. It presumes that the
KLT of the source is known and can be viewed as a weak
local stability result for the backward adaptive KLT coding
described in the final subsection.

Theorem 2: Let X = [Xi,...,Xs]T be Gaussian and
have KLT T, i.e. T is an orthonormal matrix such that
TRxTT = A, where Rx = E[XXT] and A is a diagonal
matrix with non-increasing diagonal elements. Let X =
TTq(TX), where q is a scalar quantization function that
induces zero-mean quantization noise. Then, regardless of
the quantizer resolution, T E[X XT)T7 is a diagonal matrix,
so the KLT of X differs from T’ by at most a permutation.
Proof: Let Y = TX and e = g(Y) — Y. Note that since
Y is Gaussian and has uncorrelated components, the com-
ponents are independent. Since the quantization is scalar,
we have furthermore that e; is independent of e; and Y; for
i # j. Then

TEXX"ITT = TE[TT¢(¥V)q(¥)* T)T"
ElgV)q¥) 1= ElYY |+ EleY” +YeT +ee”]

In the final expression, the first expectation gives A, while
the three remaining expectations yield diagonal matrices
because of the zero-mean and independence conditions. O

4.2. Experimental results

Consider the following method for transform coding of a
scalar source. The source samples are formed into vectors
of size k = 8. These vectors are transformed by left multipli-
cation by a unitary matrix T and then uniformly scalar qu-
antized with stepsize A. Assume the quantized values will

4The KLT can be determined from the covariance matrix, but
the converse is not true.
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Figure 3: Coding gain of adaptive system compared to op-
timal coding gain for various coarseness levels.

be coded-with an adaptive entropy coder.® At the decoder,
and at the encoder for adaptation purposes, reconstruction
is performed by left multiplication by 7. After every block
of N vectors, the transform T is updated to be the empi-
rical KLT of the last m blocks of quantized data, where m
is-sometimes called the memory factor and m = co is used
to indicate that all past data is used in the autocorrelation
estimation. An unbiased autocorrelation estimate is used
in the KLT calculation. :

This backward adaptive KLT coding scheme has been
tested on zero-mean, unit variance AR(1) sources. The re-
sults of the first experiment, given in Fig. 3, show that
after a suitable amount of data has become available, close
to optimal coding gain is achieved. The correlation coef-
ficient of the source is a = 0.9, thus the optimal coding
gain is =~ 4.28. An initial transform of T = I, a block
length of N = 2, a memory factor of m = oo, and quan-
tization stepsizes A = 0.01, 0.5, 1, and 2 were used. This
experiment shows the relative importance of the number of
samples available and the coarseness of the data. A system
that uses unquantized data in adaptation (thus requiring
side information) would have coding gain approximately as
shown by the A = 0.01 curve; the relatively small difference
between this curve and the remaining curves shows that the
dependence on the coarseness is quite small.

A principle disadvantage of static coding algorithms is
performance loss due to a mismatch between a source and
the source assumed in the design. The second experiment
demonstrates the advantage of using this adaptive method
in the case of mismatch. The source has correlation coef-
ficient a = 0.99 and is coded using an- initial transform of
T = I, a block length of N = 50, and a memory factor of
m = 2. In Fig. 4 performance is compared to the perfor-
mances of KLT coders designed for correlation coefficients
of a = —0.9, 0, 0.5, 0.9, and the true value of 0.99. For
the adaptive coder, the rates and distortions given are ave-

5 Assuming an equally weighted distortion measure and identi-
cal normalized component p.d.f.’s, using equal component quan-
tizer stepsizes and no overload is essentially the same as optimal
bit allocation. Also note that this is constant distortion ope-
ration; constant rate operation could be achieved by varying A
according to a rate measure.
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Figure 4: Performance comparison between adaptive
system and fixed coders. Source has correlation a = 0.99
and fixed coders are designed for various values of @, inclu-
ding the true value. o’s mark performance of the adaptive
system.

rages over blocks 2 through 26. As the mismatch becomes
larger, the performance gain from the adaptive system also
becomes larger. The loss in performance due to adaptation
compared to a properly matched static design is minimal.
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