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 ABSTRACT

This paper describes a two-stage statistical approach sup-
porting content-based search in image databases. The first
stage performs correspondence analysis, a factor analysis
method transforming image attributes into a reduced-size,
uncorrelated factor space. The second stage performs as-
cendant hierarchical classification, an iterative clustering
method which constructs a hierarchical index structure for
the images of the database. Experimental results supporting
the applicability of both techniques to data sets of heteroge-
neous images are reported.

1. CONTENT-BASED IMAGE RETRIEVAL

The recent development of multimedia information systems
has brought the need to manage large image databases, us-
ing efficient access techniques for archival and retrieval.
Besides the use of catalog inventories based on textual de-
scriptions, some systems have introduced the possibility to
query the database through example images, or by specify-
ing the desired image in terms of dominant colors [2] [3],
texture [2] [8], curvilinear shape of objects [2] [7], and
overall appearance of the whole image [8].

However, the practical application of the above approaches
is often affected by several drawbacks. First, the choice of
the image attributes appears arbitrary, and is often depen-
dent on the specific application domain of the database. To
overcome the task-dependency of such a choice, one may
use a large set of general-purpose attributes, for instance
color histograms, co-occurrency matrices, etc. However,
this often results in very high-dimensional spaces, which
are often highly correlated. Furthermore, the common use
of the Euclidean distance for computing a similarity mea-
sure in such feature spaces appears unjustified.

Another weak point of most existing approaches is the inef-
ficiency of their search operations at retrieval time. Given
the large number of images and the high dimensionality of
classical feature spaces, it is important to avoid exhaustive,
linear-time direct comparisons. In other words, it is neces-

sary to automatically map feature vectors intoindexes
which provide a more rapidly access to the relevant images
in the database [5] [9]. Examples are hash tables, providing
nearly constant access time [4], or hierarchical index struc-
tures, such as trees.

In this paper, we describe an approach for computing low-
dimensional decorrelated indexes for an image database,
and for organizing such indexes in a hierarchical tree struc-
ture allowing logarithmic-time binary search. In addition,
these methods indicate the subset of pertinent image fea-
tures and attributes that may be retained for indexing. Both
techniques draw from methods developed forexploratory
statistics [6], which offer well-founded, formal approaches
for “exploring and explaining” the underlying structure of a
data set.

2. CORRESPONDENCE ANALYSIS

Given a set of images composing the database, a
corresponding set of -dimensional feature vectors

,  is first computed, and
stored in a data table  of dimension . The
index creation stage consists of mapping these vectors onto
an appropriate index space. We propose to derive such a
mapping by applying a factor analysis method, calledcor-
respondence analysis (CA), to the data table . In a similar
way to other factor analysis methods (e.g. principal compo-
nent analysis, Karhunen-Loeve decomposition), a new or-
thogonal set of axes (the factor axes) is found, so as to max-
imize the sum of norms of the projected data onto the new
axes. These axes can be ordered, according to a decreasing
amount of data variance they account for. In this way, a
lower-dimension decorrelated factor subspace may be iden-
tified, accounting for most of the variance in the data. In
computational terms, this means that all subsequent data
representation and comparison operations can be performed
on a reduced dimensional space of size .

The distinctive feature of CA with respect to other classical
factor analysis methods lies in a particular normalization
applied to the data table  before the transformation. This
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normalization yields anobservation matrix . It can be
shown that the Euclidean metrics defined over points in the
transformed space  is equivalent to the  distance on
the corresponding points in the original space. Below is
a detailed description of the normalization and transforma-
tion operations. Let us first denote by  the scalar:

  .

Let us also define two diagonal weight matrices and
, as follows:

The data table  is first normalized into the observation
matrix  = . The next step is the projection of
into the factor space, given by the transformation

, where the matrix  con-
tains the eigenvectors of the covariance matrix .

The “normalization” of  into  by means of the two ma-
trices  and  allows both images and features (rows
and columns of ) to be projected onto acommon factorial
space, where they play a similar role and can be analyzed si-
multaneously. For instance, it is possible to discover which
particular attribute is closest to a cluster of images, hence
which are the important parameters characterizing such im-
ages. Conversely, it is possible to identify the images most
typical of a given attribute. Correspondence analysis also
provides tools for analyzing the statistical significance of
the projected vectors in the factorial space. For instance, it
is possible to select the attributes whose absolute contribu-
tion to each factorial axis is the largest. Further details on
such analysis tools can be found in [6] [10].

3. HIERARCHICAL INDEXING

Given an image database, and the associated feature vectors
, the above procedure describes how to compute

their coordinates  in a reduced -dimensional
factorial space. In order to perform efficient content-based
retrieval in the database, it is necessary to construct a hier-
archical index representation which, given a query image
described by a vector, directly points to classes of similar
images. This can be done by clustering the transformed fea-
ture vectors using some metric. Below we describe an iter-
ative clustering algorithm calledascendant hierarchical
classification (AHC) [1].

The clustering process in AHC is incremental. First, pairs of
vectors  that are closest in the factorial space are
merged. Here, the Euclidean norm is used, which corre-
sponds to the  distance on the original space [6]. An im-
age whose vector  is isolated from all the other ones, i.e.

, where  is a distance threshold, is

kept as an individual cluster. In the next step, a newly-
formed cluster can be merged with another cluster. Rather
than using distances between cluster centroids as the merg-
ing criterion, a variance criterion is employed, in particular
the within-class variance. A cluster
(possibly composed of a single image) is thus merged with
the cluster  which minimizes the internal variance of the
new merged class . By repeatedly performing this
clustering procedure, a binary tree is constructed with ap-
proximately  nodes and depth . Each node stores
information on its center of gravity, its variance, and a
pointer to the individual pictures forming the cluster.

It is possible to use the above binary tree as an a hierarchical
index structure pointing to the images, by labelling each
node with a variable-length binary code ,
where  identifies the depth of the node in the tree,
and the value of  encodes, respectively, a left
or right branch from the ancestor node at level. Once the
tree is constructed for the whole database, this index struc-
ture can be used to rapidly extract the images that are most
similar to a query image. The retrieval procedure is as fol-
lows. First, a feature vector is computed from the query
image and transformed into the factorial space, yielding a
compact vector . The search then starts from the root
node, and computes the distance of from the centers of
gravity of the two clusters represented by the children nodes

 and . The cluster with the closest center of gravity
(e.g. ) is selected, and the search continues down to its
children , . This process is repeated until the
number of images represented by a node corresponds to the
number  of desired responses from the database. The
pointers to the individual images stored with the selected
node are then used to access and display the retrieved imag-
es to the user. In case of uniform distribution of the image
database in the factorial space, the classification tree is bal-
anced, in which case the search has  complexity.

4. EXPERIMENTAL RESULTS

The methods described above have been applied on a data-
base of images of various type and content, currently con-
taining  gray-level images (cf. Figure 2). For dem-
onstration purposes, and in consideration of the uncon-
strained nature of the images, the choice of the attributes
computed from each image was based on the following cri-
teria: use of standard algorithms, ease of computation, low
dimensionality, and invariance to translation, rotation, and
scale changes. In practice, these attributes were obtained by
1st- and 2nd-order statistical moments, computed on the
raw image intensity, as well as on three classes of geometric
primitives: line segments andcircular arcs (approximating
the image contours), anduniform regions (obtained through
region growing). The corresponding attributes were the fol-
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lowing: average  (attribute no.1) and standard deviation
 (2) of image intensity; average  (3) and standard

deviation  (4) of segment lengths; average  (5) and
standard deviation  (6) of segment orientations; average

 (7) and standard deviation  (8) of circular arc
lengths; average  (9) and standard deviation  (10)
of circular arc radii; average  (11) of the standard devia-
tion of region intensities (measure of regions homogeneity);
standard deviation  (12) of the averages of region inten-
sities (measure of image homogeneity). Attribute 5 was
found to be unsuitable, and was excluded from the follow-
ing analysis.

Figure 1 shows the projection of the  images and
 attributes into the factorial plane spawned by the

first two factorial axes, which explain 67.0% of the total
variance of the data. Although more factorial axes should be
used for a finer analysis, the display of these two axes al-
ready allows one to understand the properties of the current
data set. Inspection shows distinct image clusters (e.g. of
images no. 13, 23, 35, 38), isolated elements (e.g. image 5),
and large clouds. The distances in factorial space between
these images correspond well to their subjective differenc-
es, and will be reflected in the hierarchy of classes yielded
by AHC. It can also be seen that some attributes appear sig-
nificant, i.e. well separated (e.g. , , , denoted re-
spectively by 1, 2, 4), whereas other ones are highly corre-
lated (e.g. , , , , respectively 6, 7, 8, 10).
Some attributes of the latter group may thus be dropped to
reduce the computational cost. The dominant factors in ex-
plaining the first factorial axis are found to be, in the order,

, , , . Another type of reasoning can be done
on the relationships between images and attributes. The
proximity of attribute  (2) to images 10 and 48, for in-
stance, means that these images are very representative of
attribute , or conversely, that characteristic  is a key
factor in positioning images 10 and 48 in this factorial
plane.

Figure 2 presents some of the results that can be obtained by
the AHC algorithm described above for hierarchical index-
ing. In this experiment, the number of factors used for
computing the distance and moments was limited to 4,
which explains 90.6% of the total variance. This provides a
binary tree that can be cut at various levels to display the
corresponding images. The clusters shown in Figure 2 cor-
respond to those at level 3 (i.e. whose bit-length is 3). For
two large classes, also the subclasses obtained at one or two
further levels are displayed. The dominant factors in ex-
plaining these classes are those mentioned above. For in-
stance, it is clear that the 8 classes are mainly ordered ac-
cording to the first axis, i.e. the average gray level. Further-
more, the classes in the middle (codes:100, 101, 110,
11100) contain high-contrast images, suggesting that the

second factor axis  was significant in determining them.
Geometric features also play an important role, as shown by
the segregation between images containing geometrically
simple, large-scale features (e.g. classes 000 to 011) and
complex small-scale ones (e.g. classes11110, 11111).
Some classes contain images without clear relationships
from the perceptual point of view (e.g. classes11100,
11101); this can be explained in terms of the globality of the
attributes (average values and standard deviations), and of
the small dimension of the reduced factorial space. Howev-
er, a number of classes can be identified, which do group
perceptually-similar pictures, for instance class 001 (paper-
clips), class 1000 (interior scenes), class 1001 (stamps),
class 101 (playing cards), and classes 11110 and 11111 (bi-
ological images).

REFERENCES

[1] E. Diday, G. Govaert, Y. Lechevallier and J. Sidi
(1981). Clustering in pattern recognition. In: J.-C. Simon,
R. Haralick, Eds.,Digital Image Processing, D. Reidel
Publ. / Kluwer Inc., 19-58.
[2] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q.
Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkov-
ic, D. Steele, and P. Yanker (1995). Query by image and
video content: the QBIC system.IEEE Computer, Septem-
ber, 23-32.
[3] Y. Gong and M. Sakauchi (1995). Detection of regions
matching specified chromatic features.Comp. Vision and
Image Understanding, 61, 2, March, 263-269.
[4] R. H. Gueting (1994). An introduction to spatial data-
base systems.V.L.D.B. Journal, Special Issue on Spatial
Databases Systems, H.-J. Schek, Ed., 3, 4, 357-399.
[5] V.N. Gudivada and V.V. Raghavan, Eds (1995). Spe-
cial Issue: Finding the right image: Content-based image re-
trieval systems,IEEE Computer, September.
[6] M. Jambu (1991).Exploratory and Multivariate Data
Analysis. Statistical Modeling and Decision Science Series,
Academic Press.
[7] T. Kato (1992). Data-base architecture for context-
based image retrieval.Proc. SPIE, 1662: Image storage and
retrieval systems, 112-123.
[8] A. Pentland, R.W. Picard, and S. Sclaroff (1994). Pho-
tobook: tools for content-based manipulation of image data-
bases. (Storage and Retrieval for Image and Video Databas-
es II, San Jose, CA, USA, 7-8 Feb. 1994).Proceedings of
the SPIE - The International Society for Optical Engineer-
ing, 2185, 34-47.
[9] T. Pun and R. Milanese (1995). Computer vision and
multimedia information systems. In: M. Sakauchi and R.
Jain, Eds.,Proc. International Workshop on Multimedia In-
formation Systems and Hypermedia, Tokyo, Japan, March
23-24, 29-37.
[10]  T. Pun, D. Hochstrasser and C. Pellegrini (1988). Cor-
respondence analysis and hierarchical classification of
complex images: application to two-dimensional gel elec-
trophoretograms. In: J.L. Lacoume, A. Chehikian, N. Mar-
tin and J. Malbos (eds),Signal Processing IV, Theories and
Applications, North-Holland.

µG
σG µSL

σSL µSO
σSO

µAL σAL
µAR σAR

µR

σR

N 54=
M 11=

µG σG σSL

σSO µAL σAL σAR

µG σR σSL σG

σG

σG σG

L

σG



Figure 1: Factor subspace spawned by the first and second axes. Images are indicated by a dot (.) and numbered from 1
to 54; circles correspond to images which contribute the most to the factor axes. Attributes are indicated by a cross (+)
surrounded by a grey square; they are numbered from 1 to 12 corresponding respectively to, , , ,

, , , , , , , .

Figure 2: Image classes at the 3rd level of the indexing tree produced by the AHC algorithm, using factor axes.
The codes below each image correspond to the numbers indicated in Figure 1. Some dark images have been slightly
enhanced for print out.
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