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ABSTRACT sary to automatically map feature vectors iimdexes

which provide a more rapidly access to the relevant images

This paper describes a two-stage statistical approach supmn the database [5] [9]. Examples are hash tables, providing

porting content-based search in image databases. The firstearly constant access time [4], or hierarchical index struc-

stage performs correspondence analysis, a factor analysigyres, such as trees.

method transforming image attributes into a reduced-size,

uncorrelated factor space. The second stage performs adh this paper, we describe an approach for computing low-

cendant hierarchical classification, an iterative clustering dimensional decorrelated indexes for an image database,

method which constructs a hierarchical index structure for and for organizing such indexes in a hierarchical tree struc-

the images of the database. Experimental results supportingure allowing logarithmic-time binary search. In addition,

the applicability of both techniques to data sets of heteroge-these methods indicate the subset of pertinent image fea-
neous images are reported. tures and attributes that may be retained for indexing. Both

techniques draw from methods developedeiploratory
1. CONTENT-BASED IMAGE RETRIEVAL statistics[6], which offer well-founded, formal approaches
for “exploring and explaining” the underlying structure of a
The recent development of multimedia information systems data set.
has brought the need to manage large image databases, us-
ing efficient access techniques for archival and retrieval. 2. CORRESPONDENCE ANALYSIS
Besides the use of catalog inventories based on textual de-
scriptions, some systems have introduced the possibility toGiven a set of images,, ..., | composing the database, a
query the database through example images, or by specifycorresponding set ofM -dimensional feature vectors

ing the desired image in terms of dominant colors [2] [3], 9 = [9j 1, -+ G w] . 1 0[1...N] is first computed, and
texture [2] [8], curvilinear shape of objects [2] [7], and stored in'a data table = [g;;] ofdimensionN x M. The
overall appearance of the whole image [8] index creation stage COHSISIS of mapplng these vectors onto

an appropriate index space. We propose to derive such a
However, the practical application of the above approachesmapping by applying a factor analysis method, catted
is often affected by several drawbacks. First, the choice ofrespondence analysi€A), to the data tabl6 . In a similar
the image attributes appears arbitrary, and is often depenway to other factor analysis methods (e.g. principal compo-
dent on the specific application domain of the database. Tonent analysis, Karhunen-Loeve decomposition), a new or-
overcome the task-dependency of such a choice, one mayhogonal set of axes (the factor axes) is found, so as to max-
use a large set of general-purpose attributes, for instanceémize the sum of norms of the projected data onto the new
color histograms, co-occurrency matrices, etc. However, axes. These axes can be ordered, according to a decreasing
this often results in very high-dimensional spaces, which amount of data variance they account for. In this way, a
are often highly correlated. Furthermore, the common usejower-dimension decorrelated factor subspace may be iden-
of the Euclidean distance for computing a similarity mea- tified, accounting for most of the variance in the data. In
sure in such feature spaces appears unjustified. computational terms, this means that all subsequent data
representation and comparison operations can be performed

Another weak point of most existing approaches is the inef- on a reduced dimensional space of size min{ M. N}

ficiency of their search operations at retrieval time. Given
the large number of images and the high dimensionality of The distinctive feature of CA with respect to other classical
classical feature spaces, it is important to avoid exhaustivefactor analysis methods lies in a particular normalization
linear-time direct comparisons. In other words, it is neces- applied to the data tabld  before the transformation. This



normalization yields ambservation matrixP. It can be kept as an individual cluster. In the next step, a newly-
shown that the Euclidean metrics defined over points in theformed cluster can be merged with another cluster. Rather
transformed spac&' is equivalent to the? distance on  than using distances between cluster centroids as the merg-

the corresponding points in the original sp&eBelow is ing criterion, a variance criterion is employed, in particular
a detailed description of the normalization and transforma-the within-class variance A cluster C;, = {xil, X, oo}
tion operations. Let us first denote gy  the scalar: (possibly composed of a single image) is thus nierged with
the clusterC. which minimizes the internal variance of the
g= Zm’ Gj - new merged clas€; [ Cj. By repeatedly performing this

clustering procedure, a binary tree is constructed with ap-
proximately2N nodes and deptlogN . Each node stores

" " N 1o information on its center of gravity, its variance, and a
[Dyl,. = (ZJ =G [Dy]jj = (zi -1 Gi) pointer to the individual pictures forming the cluster.

Let us also define two diagonal weight matriés and
Dy, as follows:

The data tables is first normalized into the observation It is possible to use the above binary tree as an a hierarchical

matrix P =D, G Dy. The next step is the projection Gf index structure pointing to the images, by labelling each
into the factor space, given by the transformation node with a variable-length binary codgb,b,...b,) ,

G' = gD, PE, where the matrixE = [e,, ...,ey] con- wheren < logN identifies the depth of the node in the tree,
tains the eigenvectors of the covariance mafrix PTP. and the value ob,, = {0, 1} encodes, respectively, a left

or right branch from the ancestor node at lewelOnce the

: ) tree is constructed for the whole database, this index struc-
trices D, andD, allows both images and features (rows y,re can be used to rapidly extract the images that are most
and columns of5) to be projected onto@mmorfactorial gimilar to a query image. The retrieval procedure is as fol-
space, where they play a similar role and can be analyzed sj,,s. First, a feature vectay is computed from the query
multaneously. For instance, it is possible to discover WhiChimage and transformed into the factorial space, yielding a

particular attribute is closest to a cluster of images, henc%ompact vectorx. The search then starts from the root

which are the important parameters characterizing such im'node, and computes the distancexofrom the centers of

ages. Conversely, it is possible to identify the images mosiy ity of the two clusters represented by the children nodes
typical of a given attribute. Correspondence analysis also(o) and (1) . The cluster with the closest center of gravity
provides tools for analyzing the statistical significance of e.g. (1) ) is selected, and the search continues down to its
the projected vectors in the factorial space. For instance, ithidren (10) , (11) . This process is repeated until the
is possible to select the attributes whose absolute contribug, mper of images represented by a node corresponds to the
tion to each factorial axis is the largest. Further details on,,wber F of desired responses from the database. The
such analysis tools can be found in [6] [10] pointers to the individual images stored with the selected
node are then used to access and display the retrieved imag-
3. HIERARCHICAL INDEXING es to the user. In case of uniform distribution of the image
. . . database in the factorial space, the classification tree is bal-
Given an image database, and the associated feature Vecmé?]ced in which case the search fuah,/F complexity
gy, --» 9y » the above procedure describes how to compute ' ’
their coordinatesx,, ..., Xy, in a reducedL -dimensional
factorial space. Inlorder'\éo perform efficient content-based 4. EXPERIMENTAL RESULTS

retrieval in the database, it is necessary to construct a hiefrne methods described above have been applied on a data-

archical index representation which, given a query imagep,qe of images of various type and content, currently con-
described by a vector, directly points to classes of similar tainingN = 54 gray-level images (cf. Figure 2). For dem-

images. This can be done by clustering the transformed feaggration purposes, and in consideration of the uncon-
ture vectors using some metric. Below we describe an itergyained nature of the images, the choice of the attributes
ative clustering algorithm calledscendant hierarchical computed from each image was based on the following cri-
classification(AHC) [1]. teria: use of standard algorithms, ease of computation, low

The clustering process in AHC is incremental. First, pairs ofdimensionality, and invariance to translation, rotation, and
vectors x,, X, that are closest in the factorial space are scale changes. In practice, these attributes were obtained by

merged. Here, the Euclidean nokry is used, which corre- 1st- and 2nd-order statistical moments, computed on the
sponds to thg2  distance on the original space [6]. An im_rayvil_”r?age i_ntensil;yas well ason three classes of geqmetric
age whose vectog, s isolated from all the other ones, i ePrimitives: line segmentandcircular arcs (approximating

min ”Xh_xk" >T . where T is a distance threshold, is the image contours), anahiform regiongobtained through
region growing). The corresponding attributes were the fol-

The “normalization” ofG intd® by means of the two ma-



lowing: averagels (attribute nol) and standard deviation second factor axis g was significant in determining them.
O (2 of image intensity; averageg, (3) and standard ~ Geometric features also play an important role, as shown by
deviationog, (4 of segment lengths; averagg (5) and the segregation between images containing geometrically
standard deviationg 5 Y®f segment orientations; average simple, large-scale features (e.g. classes 000 to 011) and
Ha (7) and standard deviatioa,, (8) of circular arc complex small-scale ones (e.g. clasdd4410, 11111).
lengths; averaga,r  (9) and standard deviatigp 10) ( Some classes contain images without clear relationships
of circular arc radii; averageg (11) of the standard devia- from the perceptual point of view (e.g. classisl00,
tion of region intensities (measure of regions homogeneity);11101); this can be explained in terms of the globality of the
standard deviatiooy 1) of the averages of region inten- attributes (average values and standard deviations), and of
sities (measure of image homogeneity). Attribute 5 wasthe small dimension of the reduced factorial space. Howev-
found to be unsuitable, and was excluded from the follow- er, a number of classes can be identified, which do group
ing analysis. perceptually-similar pictures, for instance class 001 (paper-
clips), class 1000 (interior scenes), class 1001 (stamps),

Figure 1 shows the projection of the = 54 images and  ¢j355 101 (playing cards), and classes 11110 and 11111 (bi-
M = 11 attributes into the factorial plane spawned by the ological images).

first two factorial axes, which explain 67.0% of the total

variance of t_he data. Alt_hough more factorial axes should be REFERENCES

used for a finer analysis, the display of these two axes al-

ready allows one to understand the properties of the currenl] E. Diday, G. Govaert, Y. Lechevallier and J. Sidi
data set. Inspection shows distinct image clusters (e.g. 0f1981). Clustering in pattern recognition. In: J.-C. Simon,
images no. 13, 23, 35, 38), isolated elements (e.g. image 5&' Haralick, Eds.Digital Image ProcessingD. Reidel

) . : ubl. / Kluwer Inc., 19-58.
and large clouds. The distances in factorial space betwee[h] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q

these images correspond well to their subjective differenc-,_uh,ing B. Dom. M. Gorkani. J. Hafner. D. Lee. D. Petkov-
es, and will be reflected in the hierarchy of classes yieldedic, D. éteele, and P. Yanker (1995). é)uery bi/ image and
by AHC. It can also be seen that some attributes appear sig¢ideo content: the QBIC systedf=EE ComputerSeptem-

nificant, i.e. well separated (ejgg, 0, Og , denoted re-  ber, 23-32.

spectively by 1, 2, 4), whereas other ones are highly corre{3] Y. Gong and M. Sakauchi (1995). Detection of regions
lated (€.90g Ha OaL Oag.respectively 6, 7,8, 10). matching specified chromatic featur€omp. Vision and

: Image Understandingl, 2, March, 263-269.
Some attributes of the latter group may thus be dropped t(t4] % H. Gueting (1%394) An introduction to spatial data-
reduce the computational cost. The dominant factors in exp35e éyétems\/.L.D.B. Johrnal Special Issue on Spatial

plaining the first factorial axis are found to be, in the order, Databases Systems, H.-J. Schek, Ed., 3, 4, 357-399.

Mg, Or: OgL . Og - Another type of reasoning can be done [5] V.N. Gudivada and V.V. Raghavan, Eds (1995). Spe-
on the relationships between images and attributes. Theial Issue: Finding the rightimage: Content-based image re-
proximity of attributea (2) to images 10 and 48, for in-  trieval systemsEEE ComputerSeptember.

stance, means that these images are very representative i M. Jambu (1991)Exploratory and Multivariate Data
attributea , or conversely, that characteristic  is a key ﬁgg(ljyesr'ﬁi?%‘:'esstgal Modeling and Decision Science Series,
fa}ctor in positioning images 10 and 48 in this factorial [7] T. Kato (1992). Data-base architecture for context-
plane. based image retrievatroc. SPIE, 1662: Image storage and
Figure 2 presents some of the results that can be obtained t{g]t ni‘va;;)]/tsi';enn(’jlﬂél %,Ql?a:?éard and S. Sclaroff (1994). Pho-
the AHC algorithm described above for hierarchical index- 15hq0k: tools for content-based manipulation of image data-
ing. In this experiment, the number of factors used for  pases. (Storage and Retrieval for Image and Video Databas-
computing the distance and moments was limited to 4,es I, San Jose, CA, USA, 7-8 Feb. 19%&pceedings of
which explains 90.6% of the total variance. This provides athe SPIE - The International Society for Optical Engineer-
binary tree that can be cut at various levels to display then9: 2185, 34-47. ) o
corresponding images. The clusters shown in Figure 2 corl9] T- Pun and R. Milanese (1995). Computer vision and

. ) . multimedia information systems. In: M. Sakauchi and R.
respond to those at level 3 (i.e. whose bit-length is 3). Foryain "Eds proc. Internatiozal Workshop on Multimedia In-

two large classes, also the subclasses obtained at one or tWgrmation Systems and Hypermedi@kyo, Japan, March
further levels are displayed. The dominant factors in ex-23-24, 29-37.

plaining these classes are those mentioned above. For irf10] T. Pun, D. Hochstrasser and C. Pellegrini (1988). Cor-
stance, it is clear that the 8 classes are mainly ordered adespondence analysis and hierarchical classification of
cording to the first axis, i.e. the average gray level. Further-COMPIex images: application to two-dimensional gel elec-

. : trophoretograms. In: J.L. Lacoume, A. Chehikian, N. Mar-
more, the classes in the middle (cod®80, 101, 110, 45 '3nd 3. Malbos (edsSignal Processing IV, Theories and
1110Q contain high-contrast images, suggesting that thepplications North-Holland.



‘58 e aq |+1|
v1s 17 a4 a3y 5"«‘11 . 3|5—|
£
g 1 g
18 L, 3 o)
E) 2
Gadt)
i N
EE=1
@
&
L

Figure 1: Factor subspace spawned by the first and second axes. Images are indicated by a dot (.) and numbered from 1
to 54; circles correspond to images which contribute the most to the factor axes. Attributes are indicated by a cross (+)
surrounded by a grey square; they are numbered from 1 to 12 corresponding respectiyelyolg, Hg, , Og| »
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Figure 2: Image classes at the 3rd level of the indexing tree produced by the AHC algorithrh, asthdactor axes.
The codes below each image correspond to the numbers indicated in Figure 1. Some dark images have been slightly
enhanced for print out.



