SPATIAL ADAPTIVE WAVELET THRESHOLDING FOR IMAGE DENOISING
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ABSTRACT

Wavelet thresholding with uniform threshold has shown
some success in denoising. For images, we propose that this
can be improved by adjusting thresholds spatially, based on
the rationale that detailed regions such as edges and tex-
tures tolerate some noise but not blurring, whereas smooth
regions tolerate blurring but not noise. The proposed al-
gorithm is based on multiscale edge detection and image
segmentation and then thresholding the coefficients of dif-
ferent regions with adaptive thresholds.

1. INTRODUCTION

When filtering random noise from an image, the two main
concerns are how much of the noise granularity has been
removed, and how well the edges are preserved (without
blurring). Typical denoising methods are based on smooth-
ing and stems from the notion that for a large class of im-
ages, the signal energy are compacted into a few transform
coefficients and that noise contribute to the high frequency
and insignificant coeflicients. For Fourier based methods,
the standard one is the Wiener filter, which attenuates the
high frequency part of the spectrum, but as a result, re-
moves some of the image details as well. Alternatively, the
technique of suppressing coefficients in the wavelet trans-
form domain has shown promise, where the localized na-
ture of the coeficients makes it more suitable for locally
adaptive image processing.

One method that has received considerable attention
In recent years is wavelet thresholding, an idea that noise
is removed by killing coefficients that are insignificant rel-
ative to some threshold, and whose attractiveness is due
to its simplicity and effectiveness. On the theoretical side,
Donoho and Johnstone {1] have shown this technique to pos-
sess some asymptotic minimax optimality properties. For
image applications, 1t has shown success for various types of
noise such as white random noise and compression artifacts
[2, 6]. An extreme case of eliminating coeflicients is the de-
tection of multiscale edges [3], where all but the coefficients
corresponding to edges are eliminated, a sensible idea when
the noise power is so large as to render all the image details
irrecoverable.

The aforementioned thresholding techniques in [1, 2, 6]
rely on the likelihood that significant coefficients are due to
the signal, while insignificant coefficients are due to noise,
and there is no spatial discrimination to such processing (i.e.
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same threshold throughout). However, one can improve on
this by observing that noise has varied visibility in different
regions, and thus it makes sense to adapt to the changing
spatial characteristics. That is, in a smooth region, noise
is more visible, whereas in a detailed region such as edges
and textures, one rather tolerates a little noise to keep the
signal details. Hence, the threshold should be adapted in a
spatial manner.

This spatial adaptive idea is illustrated in Figure 1 for
a 1-D signal, where a step edge is corrupted by é#d Gaus-
sian additive noise, and it is denoised by soft-thresholding
(’shrink’ or kill’) the wavelet coefficients with a different
threshold at each scale. Figure 1 (a) shows the wavelet de-
composition of the signal (3 scales and a residual). The
peaks induced by the step shows strong correlation across
scales, whereas the peaks due to noise do not. If a small
threshold is used, the sharp edge is retained but the signal
1s still noisy. On the other hand, if the threshold is very
large, then the reconstructed waveform is smoothed out at
the step. Hence, to both retain the step and remove the
noise, a small threshold is used on the step-induced peaks,
and a large threshold is used elsewhere, and the result is
a well denoised step function (see Figure 1 (b)). This ex-
ample illustrates that a spatially adaptive threshold is a
good idea. One may ask why hard-thresholding, a ’keep’ or
kill’ strategy, is not used. The reason is that for images,
soft-thresholding usually yields more visually pleasing im-
ages than hard-thresholding, which tends to produce more
spurious blips. Hence, soft-thresholding is employed in our
denoising algorithm.

The basis of our algorithm is to first classify the im-
age into different regions, followed by soft-thresholding with
threshold adapted to each region. The classification con-
sists of two parts. First, edges are detected using multiscale
edge analysis described in [3, 4]. Then the remaining points
are classified further into texture or smooth regions using a
standard image segmentation technique.

2. DENOISING ALGORITHM

The denoising algorithm is based on soft-thresholding the
wavelet coefficients, with the thresholds adapting to the
different spatial characteristics (edges, textures, or smooth
area). For the region classification, first the edge regions are
detected from the non-edges. Then the non-edge regions are
further classified into a textured or a non-textured area.
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Figure 1: Motivation for using adaptive thresholding. (a)
Wavelet decomposition (3 scales and the low frequency
residual) of a step function corrupted by noise. (b) The
original noisy step function, and the reconstructions from
small and large uniform thresholding, and adaptive thresh-
olding.

2.1. Region Segmentation
2.1.1. Edges

The method of multiscale edge detection described in [3, 4]
is used to find the edges. The main ideas will be sum-
marized here, and the reader is referred to [3, 4] for more
details. With a certain class of wavelets, the nonsubsam-
pled wavelet decomposition essentially implement the dis-
cretized gradient of the image smoothed at different scales.
From traditional edge detection, one knows that the points
of sharp variations occur at local maxima (called modulus
magzima) of the gradient norm in the direction of the gradi-
ent . An isolated singularity (i.e. point of sharp variation)
induces modulus maxima which propagate across scales,
and this evolution can be characterized by the local Lip-
schitz regularity. That is, if the function f is Lipschitz a at
point (zo, yo), then for (z,y) in its neighborhood,

M, f(z,y) < Ks°,

where M, f denotes the modulus of the wavelet transform
at scale s, and K is a constant. On the other hand, a
noise sequence is almost everywhere singular, and its in-
duced modulus maxima do not show coherence across scales
(see Figure 1 (a)). This property allows one to detect edge
points by associating local maxima points across scales.
To associate the chain of modulus maxima across scales
which correspond to a singular point, the following ad hoc
method is used for computational reasons. Since the first
scale is very noisy, one starts the association from the sec-
ond scale coefficients. For each modulus maximum larger
than some threshold, if there is a modulus maximum along
the same direction within a small neighborhood of the next
scale, and if their ratio corresponds to o € [0, 2], then they
belong to the same chain. The modulus maxima of the first
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scale is assigned to be at the same locations as the modulus
maxima of the second scale.

The chain of modulus maxima are labeled as EDGE pix-
els. Furthermore, since an edge induces a “hump” in the
wavelet domain covering a small neighborhood (and this
hump grows larger as the scale becomes coarser), the mod-
ulus maximum along with a small neighborhood around it
are labeled EDGE points as well.

2.1.2. Textures and Smooth Areas

After determining the edge regions, one needs to classify
the remaining pixels to texture or smooth areas. Such a
classification resembles image segmentation, and has more
success in the space domain rather than the transform do-
main. The segmentation is done by calculating a variance
image, and then thresholding it between certain amplitudes
[5]. Each pixel of the variance image is defined as

VEi, )

> (flivs) = £Im,n))’

m,nEC

where f[¢, ] is the intensity of the discretized image, and
C is the neighborhood around pixel location (4, 5] (a 5 x 5
window is used here). To determine the thresholds, note
that the variance image is roughly an estimate of the local
variance, and in a smooth reglon contaminated by noise,
it should be approximately equal to the noise variance o2,
Hence the pixels Vi, j] which satisfy the following condition
are labeled SMOOTH: 1/(1 + &) < V[4,j]/e? < (1 +4),
where 6§ = 0.2 is used. The remaining points are classified
as TEXTURE pixels.

Such a simple segmentation of course is quite prone to
error, and for example, among a patch of predominantly
SMOOTH pixels, there are many holes with TEXTURE
pixels, and vice versa. These holes can be closed by combi-
nations of standard binary image operations called erosion
and dilation which belong to a class of operations collec-
tively described as morphological operations [5]. The ero-
sion operation turns OFF an ON pixel which has at least
one OFF neighbor; dilation looks for an ON pixel and turns
ON all of its immediate neighbors. Hence, small patches of
OFF pixels can be closed by dilation followed by erosion
(called closing) and small patches of ON pixels can be re-
moved by erosion followed by dilation (called opening). One
can also vary the number of layers (of immediate neighbors)
to close bigger holes. The combination used in this work is
closing with 3 layers and opening with 2 layers, with TEX-
TURE being the OFF pixel and SMOOTH being the ON
pixel.

2.2. Coefficient Thresholding

The actual denoising is achieved by soft-thresholding the co-
efficients with thresholds that are spatially and scale-wise
adaptive, where the soft-threshold function is defined as
M (x) = sgn(z) max(0, |z| — A), and A is the threshold. For
each scale, there are three different thresholds to be used
for the different regions, and these values are found empir-
ically. Assume that the noise power ¢ is known or can be
estimated (a reasonable estimate is from the sample vari-
ance of the finest scale of the wavelet transform). Since the



filters in the wavelet decomposition are known, we can cal-
culate the noise power at scale s = 2%, denoted by o%. The
thresholds are chosen to be scaled factors of ok, and they
are cgog, crox, and csox for the EDGE, TEXTURE, and
SMOOTH region, respectively. A good set of values are
(ce,cr,cs) = (0.4,1.4,1.8). Note that especially for large
noise ¢, it is necessary to soft-threshold the EDGE pixels
to avoid ringing.

3. RESULTS

The “cameraman” image is used as the test data, with ad-
ditive izd N(0, o) noise. The wavelets described in [4] are
used in 3 scales of nonsubsampled wavelet decomposition.
The adaptive threshold scheme is compared with uniform
thresholding and Wiener filtering (the version in the MAT-
LAB image processing toolbox). The uniform threshold-
ing method uses the threshold csox = 1.80 for each scale
s = 2%, so that it achieves the same smooth background
as that obtained by the adaptive method. Table 1 shows
the SNR of the various methods for several values of noise
strength . The SNR for the Wiener filter is taken to be
the best one amongst various parameters, but they are not
necessarily visually better than the thresholded images.

The denoised images using the adaptive and the uni-
form thresholding method are shown in Figure 3, for noise
o = 20. The image using the adaptive scheme (Figure 3(c))
is indeed sharper and retains more details than that using
the uniform method (Figure 3(d)), but at the expense of
having edges with a slight ringing, a phenomenon more no-
ticeable with increasing o. To reduce this artifact, one can
make the constants cg closer to cg and cr. Figure 2 shows
the segmented region. The segmentation method classifies
many pixels correctly, but it still needs to be improved and
made robust.

4. CONCLUSION

This work proposed an adaptive thresholding scheme which
alms at preserving edges and texture details. This is of
course at the expense of significantly more complexity. One
can dramatically reduce the complexity by detecting the
edges from the original image instead of detecting the mul-
tiscale edges in the wavelet domain, and this possibility will
be explored in the future, as well as better segmentation
methods. Another important issue concerns the values of
the thresholds, which need to be derived more systemat-
ically. Possible approaches include modeling the different
regions with a statistical prior, and finding the Bayesian
estimator.
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Figure 2: The classification map showing the segmented regions. White is SMOOTH, grey is TEXTURE and black is
EDGE.

(a) (b)

(c) (d)

Figure 3: (a) Original; (b) Corrupted with éid N(0, o = 20) noise; (c) Denoised using adaptive threshold. (d) Denoised using
uniform threshold.
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