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A B S T R A C T  
Some past work has proposed to use lossy compression to 

remove noise, based on the rationale that a reasonable com- 
pression method retains the dominant signal features more 
than the randomness of the noise. Building on this theme, 
we explain why compression (via coefficient quantization) 
is appropriate for filtering noise from signal by making the 
connection that quantization of transform coefficients ap- 
proximates the operation of wavelet thresholding for de- 
noising. That is, denoising is mainly due to the zero-zone 
and that the full precision of the thresholded coefficients is 
of secondary importance. The method of quantization is 
facilitated by a criterion similar to Rissanen’s minimum de- 
scription length principle. An important issue is the thresh- 
old value of the zero-zone (and of wavelet thresholding). For 
a natural image, it has been observed that its subband co- 
efficients can be well modeled by a Laplacian distribution. 
With this assumption, we derive a threshold which is easy 
to compute and is intuitive. Experiments show that the 
proposed threshold performs close to optimal thresholding. 

1. I N T R O D U C T I O N  
Suppose an image has been corrupted by additive noise, 
and the goal is to remove the noise. The idea of using a 
lossy compression algorithm to denoise the signal has been 
proposed in several works [4, 71. Continuing on this theme, 
one main purpose of this paper is to explain why lossy com- 
pression can be appropriate for noise filtering. More specif- 
ically, we wish to show that quantization (a common step 
in compression) of transform coefficients achieves denoising 
by posing quantization as an approximation to an effective 
denoising method called wavelet thresholding [ a ] .  

The theoretical formalization of thresholding in the con- 
text of removing noise via thresholding wavelet coefficients 
was pioneered by Donoho and Johnstone [a]. Both the soft- 
(shrink or kill) and the hard- (keep or kill) thresholding 
methods compare the input to a given threshold and set 
it to zero if its magnitude is less than the threshold. The 
idea is that coefficients insignificant relative to the thresh- 
old are likely due to noise, whereas significant coefficients 
are important signal structures. Thresholding essentially 
creates a region around zero where the coefficients are con- 
sidered negligible. Outside of this region, the thresholded 
coefficients are kept to full precision. 

Analogously, in a typical transform domain lossy com- 
pression method, negligible coefficients are set to zero, cre- 
ating what is called a “zero-zone’’ or “dead-zone”, and co- 
efficients outside of this zone are quantized. Our hypothesis 
is that an appropriate quantization scheme (and hence com- 
pression) achieves denoising because it is an approximation 
to the thresholding operation (see Figure 1). Furthermore, 
the effectiveness of denoising is mainly due to the zero-zone, 
and the full precision of the thresholded coefficients is of sec- 

0-8186-8183-7/97 $10.00 @ 1997 IEEE 

I I 

Figure  1. T h e  threshold ing  func t ion  can be approx- 
ima ted  by quant iza t ion  wi th  a zero-zone. 

ondary importance. Thus, a comparable level of denoising 
performance can be achieved by quantizing the coefficients 
with a zero-zone and a few number of quantization levels 
outside of the zero-zone. The manner of quantization will 
be facilitated by a criterion similar to  Rissanen’s minimum 
description length (MDL) [5]. 

One of the most important and frequently asked ques- 
tions in using wavelet thresholding is “What is the thresh- 
old?”, or in the compression scenario, “how to choose the 
zero-zone?’’ While Donoho and Johnstone [a] have pro- 
posed several thresholds such as the universal (ad-), 
SURE, and hybrid thresholds, and have demonstrated their 
asymptotic optimality conditions, these thresholds do not 
work well in practice. This is particularly true for images, 
and it is also rather counter-intuitive in signal processing 
applications to have the threshold values dependent on the 
sample size n. There are also many works of threshold- 
ing/shrinkage based on standard statistics techniques (e.g. 
Bayesian, cross-validation), but most of them are not suit- 
able for images and some are rather computationally in- 
tensive. Here we propose a threshold for soft-thresholding 
images which is simple and straighforward to compute. 

A large class of natural images has decaying spectrums, 
which means that the subband energy also follows a cer- 
tain decay across scales. Within each subband, the coeffi- 
cients can be well modeled by a generalized Laplacian dis- 
tribution [3] .  Assuming a Laplacian distribution, the pro- 
posed threshold is an approximation to the optimal thresh- 
old which minimizes the expected squared error among soft- 
threshold estimators. A different threshold is computed for 
each subband to adapt to the changing subband character- 
istics. 

2. WAVELET T H R E S H O L D I N G  A N D  

Definit ions a n d  Nota t ions  For simpler notations, vari- 
ables are referenced by a single index even though we are 
working in the 2-D domain. 

Suppose the signal x = {st, i = 1,. . . , n }  has been cor- 
rupted and one observes y = { y t  = x, + u t ,  i = 1,. . . , n} 
where ut is i id  N ( 0 ,  c’) and independent of xc. Let Y = W y  
denote the vector of wavelet coefficients of y ,  where W is 

T H R E S H O L D  S E L E C T I O N  
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the orthogonal wavelet transform operator, and similarly 
with X and V. The readers are referred to [3] for details 
on wavelet subband decomposition. 

Since the transform is orthogonal, V ,  is also iid Gaussian 
N(0 ,  r2 ) .  The idea of wavelet thresholding suggests filter- 
ing noise from y by thresholding its wavelet coefficients (ex- 
cept the coarsest scale coefficients . The soft-thresholding 
function, defined as ox(t)  = sgn ? t)(ltl - A)+ ,  where A is 
the threshold, is used here because it generally yields visu- 
ally more pleasing images over hard-thresholding, defined 
as t ) x ( t )  = t .  l t > x .  The denoised estimate j ,  is then the 
inverse transform of qx(Y), B = W-'rp Y ) .  

estimate of X to be in the class of soft-threshold estimates, 
X = qx(Y), the goal is to derive a threshold X which mini- 
mizes the averaged squared error, 1/N ci(Xz - Xt) ' -  

For a large class of natural images, it has been observed 
that the coefficients in each subband of its wavelet trans- 
form (with the exception of the lowest scale) can be well 
described by a generalized Laplacian distribution [3]. For 
this work, we assume the Laplacian pdf for simplicity. 

Consider now only coefficients from one subband. Let 
X - LAP(&) = $6 e-&lx1. For a large number 
of coefficients, 1/N x,(Xc - X , ) 2  N E ( 2  - X) ' .  Thus, 
we proceed to minimize E ( x  - X)' .  It can be shown that 
the Laplacian pdf is a scaled mixture of normals, and that 
the denoising problem can be reformulated with the fol- 
lowing priors: Y I X  N N ( X , g 2 ) ,  Xlu: N N(O,a;), and 
u: N EXP(a) = a e-ao:, U: 2 0. 

Breaking the problem into three priors gives implemen- 
tation advantages because it requires numerical integration 
of only one variable. That is, 

Derivat ion of Threshold  Suppose t 6 at we restrict the 

E ( 2  - X ) "  = I" J_, J__(?.(Vi - w 2  
p (  Y IX')p(X 10;) p(  U:) d Y  d X  da2 

where 

" -  ' 
Without loss of generality, assume = 1. The optimal 

threshold for each a is X*(a) = argminx?og(a,X). The 
curve of A*(&)  is plotted against 1/fi on the x-axis in 
Figure 2 (a). This curve is compared with i ( a )  .= 6 
which is seen to approximate closely X*(a), and yet IS sim- 
ple and does not need to be calculated through numerical 
minimization, Their corresponding expected squared errors 
are shown in Figure 2 (b), and the difference is within 1%. 

The choice of the threshold A(,) = f i  also makes intu- 
itive sense. For X N L A P ( G ) ,  its standard of deviation 
is Std X )  = l/fi,  and is inversely proportional to 

much larger than 1 (recall Std(X\. Thus, when 
that c = l), the signal is much stronger than the noise, 
thus the. threshold is chosen to be small to preserve most 
of the signal and remove some of the noise; vice versa, 
when Std(X) is small relative to 1, the noise dominates 
and the threshold is large to remove the noise which has 

Figure 2. (a) Comparing the opt imal  threshold 
A*(cy) (solid -) a n d  t h e  threshold i ( a )  (dot ted  ...) 
against  l/& on the x-axis. (b) Their corresponding 
MSEs, with (-) for X*(cy) a n d  (...) for x(a). 

overwhelmed the signal. It is also interesting to note that 
if us were treated as deterministic (that is, X - N(0,u:) 
and gz is to be estimated), then the threshold X(a,) = l /uz  
also approximates the corresponding optimal threshold very 
well. Now for a general value of U, the above discussion 
holds by replacing A, CY, and rl? by X/u, U'&, and br/u, 
respectively, and our proposed threshold is 

A similar threshold to (1) is found independently in [6] for 
using the same priors with the hard-thresholding function. 
Soft-thresholding is used here because it is more suitable 
for images. Furthermore, with these priors, the expected 
aquared error of optimal soft-thresholding is smaller than 
that of optimal hard-thresholding. 

There are two parameters to be estimated: the noise vari- 
ance U' and the hyperparameter, a ,  of the Laplacian pdf. 
The noise variance is estimated by the robust median esti- 
mator in the highest subband, & = Median(lY,1)/.6745, Y,  E 
subband HHI, also used in [2]. Since the signal and noise 
are assumed to be independent, Var(Y) = l / a  + U', thus 
6 = SampleVariance(Y) - 5'. In the rare case that 
C2 > SampleVariance(Y), the threshold is set to the maxi- 
mum value of that subband, X = max IYI; that is, all coef- 
ficients are set to 0. 

The above method for estimating & and A(&) are done 
for each subband independently to adapt to the different 
characteristics. 

3. QUANTIZATION WITH MDL CRITERION 
In the original thresholding scheme, the thresholded coeffi- 
cients are then inverse transformed back to yield the esti- 
mate 2. In this work, to show that quantization approxi- 
mates thresholding, there is an additional step of quantizing 
the thresholded coefficients before inverse transform. 

Consider again only one particular subband of the wavelet 

i(&) have been calculated. After thresholding, there are the 
questions of how many quantization levels and what type of 

transform, and that the parameters 8, & and the threshold 
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reconstruction values (e.g. uniform, centroid). We propose 
to use an MDL-like criterion to facilitate this decision. 

For a given set of observations, the MDL criterion is use- 
ful for choosing a reasonable statistical model which yields 
the shortest description length [ 5 ] .  I t  does this by choosing 
the model which minimizes the total code-length of a two- 
part encoding consisting of the data (based on the chosen 
model) and of the model parameters. The idea is that the 
chosen model should establish a compromise between fit- 
ting the data well and having low complexity (i.e. having 
a simple representation or a reasonable number of parame- 
ters). 

More specifically, given the set of noisy transform coeffi- 
cients Y = X + V, the framework is to code Y given the 
model X. The MDL principle chooses X which minimizes 
the two-part code-length Ltotal(Y,X) = L(YIX) + L(X), 
where L(YIX) is the code-length for Y based on X, and 
L ( X )  is the code-length for X. If it is possible to associate 
a probability distribution p(.), then one can use the ideal- 
ized code-length - log, p. In this case where the noise V ,  is 
iid N ( 0 ,  m ’ ) ,  the first term becomes 

The second term in ( 2 )  is a constant and irrelevant in the 
minimization, and thus only the first term is considered. 

In Saito’s simultaneous compression and denoising 
method [7] of combining MDL with thresholding, the hard- 
thresholding function was used and the term L ( X )  was 
taken to be (3/2)k log, n, where k is the number of nonzero 
coefficients: log, n bits to indicate the location of each 
nonzero coefficient (assuming an uniform indexing) and 
(1/2) log, n bits to represent its value. Although compres- 
sion has been achieved in the sense that a fewer number of 
nonzero coefficients are kept, it still does not address the 
issue that in a practical setting, the coefficients are usually 
quantized. Thus, our criterion is developed from a cod- 
ing point of view, and the minimization of LtoJal(Y, X) is 
restricted to X belonging to the set of quantized signals, 
whose construction will become clear in the following text. 

After the zero-zone has been determined (by the thresh- 
old), there are k nonzero coefficients and n - IC zero coef- 
ficients to be quantized and coded. For a given threshold, 
the value k is fixed and so is the bitrate for coding the lo- 
cations of zero coefficients (e.g. a naive way is to use log, n 
bits to index each of the n - k nonzero coefficients or, more 
realistically, to use runlength encoding). Thus, this term is 
again neglected in the minimization. 

For the nonzero coefficients, on each positive and nega- 
tive side, m equal-width bins are partitioned between 0 and 
the maximum absolute coefficient value, max IYI. The re- 
construction values are taken to be the centroid of each bin, 
assuming a Laplacian distribution, L A P ( a ) ,  with the pa- 
rameter estimate & as described in Section 2. Let 7 = &, 
the closed-form expression for the centroid value of a bin 
on the positive side with boundaries t* and t.+l is 

Jt:+l Z I J ( ~ ) C ~ ~  1 tie-7’’ - t i s l e  --rt.+1 

st;+, P ( Z ) d Z  7 
rl = = - +  

e-?tt - e-Ytz+l ‘ 

The negative side is similar. The indices of t i  are i E 
(0, fl, ..., +m} and the indices of ri are i E {hi, ..., rtm} 
for the positive and negative sides. 

To code the quantized value, first one needs to transmit 
the range max IY I and the value of m. These are fixed over- 
head and will be ignored in the minimization. Then entropy 

encoding is typically used to transmit the bin index of each 
coefficient. A good estimate of the bitrate for the k nonzero 
coefficients is the entropy H ( m )  = -E, lc,log2(lc,/k), 
where I C , ,  i E {fl, ..., hm},  is the number of coefficients 
with reconstruction value r, .  

Let Q[z, m] denote the operation of quantizing the input 
x with 2m + 1 levels (including the zero-zone) as described 
above, and let Xy = Q[qx(K) ,m]  denote the estimate of 
X, obtained by soft-thresholding followed by quantization. 
We choose the estimate 2Q with the associated m which 
minimizes the criterion 

II 

1 
2(1n2)a2 M D L Q  = - z(x - 2:)’ + H ( m )  (3) 

t = 1  

The space-domain estimate is taken to be the inverse trans- 
form of X Q .  

Note that the quantized estimate naturally could do 
worse than the unquantized threshold estimate. However, 
it is not our goal to achieve better than the unquantized 
estimate, but rather to establish a connection between com- 
pression (via quantization) and thresholding to show that 
lossy compression can be a good method for noise removal. 

This thresholding-quantization scheme is applied to each 
subband independently. First the noise variance a2 is esti- 
mated. Then for each subband, the parameter ti and the 
threshold x(&) are calculated, and 3 )  is minimized to  find 

LL is not thresholded but is quantized using ( 3 )  with the 
uniform distribution. 

the desired quantized coefficients. 4 he coarsest component 

4. EXPERIMENTAL RESULTS 

The images “goldhill” and “lena” , with various noise 
strength r 5 10,15,20, are used as test data. The cho- 
sen wavelet is Daubechies’ least asymmetric compactly- 
supported wavelet with 8 vanishing moments [1]; and 4 
levels of decomposition is used. Table 1 compares the 
SNRs of the soft-thresholding denoised results using the 
oracle threshold, lor-, and i(&) (adaptive in each sub- 
band). For each subband, the oracle threshold is found by 
Xorc = argminx ~ , ( q x ( y Z )  - X, )2  assuming X ,  is known. 
The SNRs resulting from using i(&) are very close to those 
of Xorc, indicating that the Laplacian pdf is a good assump- 
tion and that the estimation of the parameters is appropri- 
ate. Visually, the two sets of images are also very similar 
(see Figure 3 (b) and (c)). 

The last column in Table 1 shows the SNR of the quan- 
tized signal using i(&) as the zero-zone threshold. The 
quantized goldhill image with = 15 is shown in Figure 
3(d), where the quantization noise is quite visible. As ex- 
pected, the quantized signal uses less bits, but a t  the ex- 
pense of some degradation. On the average, the quantized 
signal loses about 1-1.5 dB over the unquantized thresh- 
olded signal, although it still has a much higher SNR than 

responsible for filtering the noise. One thing to note is that 
the zeroth-order entropy estimate, H ( m ) ,  for the bitrate of 
the nonzero coefficients is a rather loose estimate. With 
more sophisticated coding, the same bitrate could yield a 
higher number of quantization level m, thus resulting in a 
better SNR. 

Table 2 shows the values of m chosen for each subband 
of the goldhill image, U = 15, averaged over 5 runs. The 
results show that the M D L Q  criterion allocates more levels 
in the coarser, more important levels, as would be the case 
in a practical subband coding situation. 

the noisy image. This suggests that mainly the zero-zone is 
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I SNR 1 1  noisy I Xorc 1 X I A, Q[.,m] 1 

Orientation Scale 
coarse 

7 i H  0 2.0 3.6 6.2 

Table 1. SNRs (in d B )  of (1) t h e  noisy image, (2) 
oracle soft-thresholding, (3) soft-thresholding w i t h  
thresholds  1, a n d  (4) quant ized  signal w i t h  zero- 
zone  thresholds  1. Averaged over 5 runs.  

2.6 4.06.0 18.6 
LH-2.8 3166.4 12.2 

LL 39.0 

5. DISCUSSION AND CONCLUSION 
We have addressed two main issues regarding image denois- 
ing in the paper. We demonstrated the connection between 
lossy compression and wavelet thresholding to explain why 
compression is suitable for denoising. Specifically, it is the 
zero-zone in coefficient quantization that is the main agent 
in removing the noise. A suitable threshold for images has 
also been proposed for wavelet thresholding and for the 
quantization zero-zone. Results suggest that the proposed 
method may be appropriate for subband coding, in the de- 
cision of bit allocation and the manner of quantization. For 
future work, it would be interesting to jointly compute the 
best aero-zone threshold and quantization bins rather than 
compute them separately. 
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Figure  3. (a) Noisy image, D = 15. (b) Oracle  soft- 

m e t h o d  of thresholding followed b y  quant izat ion.  
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