
Zerotree Design for Image Compression:
Toward Weighted Universal Zerotree Coding

Michelle Effros *
Department of Electrical Engineering (1 36-93)

California Institute of Technology
Pasadena, California 9 1 125

effros @caltech.edu

Abstract
We consider the problem of optimal, data-dependent ze-

rotree design for use in weighted universal zerotree codes
for image compression. A weighted universal zerotree code
(WUZC) is a data compression system that replaces the
single, data-independent zerotree of Said and Pearlman
with an optimal collection of zerotrees for good image cod-
ing performance across a wide variety of possible sources.
We briefly describe the weighted universal zerotree en-
coding and design algorithms but focus primarily on the
problem of optimal, data-dependent zerotree design. We
demonstrate the pe$ormance of the proposed algorithm by
comparing, at a variety of target rates, the pe~ormance
of a Said-Pearlman style code using the standard zerotree
to the pe$ormance of the same code using a zerotree de-
signed with our algorithm. The comparison is made with-
out entropy coding. The proposed zerotree design algo-
rithm achieves, on a collection of combined text and gray-
scale images, up to 4 dB performance improvement over a
Said-Pearlman zerotree.

1 Introduction
Data compression systems are redundancy removing

systems. As a result, assumptions or a priori knowledge
about the types of data to be compressed play a crucial role
in the design of most compression algorithms. Sometimes,
this role is explicit - as in the design of a vector quantizer,
where the designer gathers a set of training data and uses
that data in the design of an appropriate collection of code-
words. In other algorithms, the assumptions employed by
the code’s designer may be less obvious, but nonetheless
implicit in the code structure. JPEG’s use of the DCT, for
example, suggests an implicit assumption that the images
to be coded will be from the class of “smooth, natural” im-
ages for which the DCT serves as an effective decorrelating
transform.

*This material is based upon work supported by NSF Grant No. MIP-
9501977.

Like these other algorithms, the zerotree algorithms of
Shapiro [11 and Said and Pearlman [2] rely upon a variety
of assumptions about the types of data to be compressed.
In particular, the designers assume first that most of the en-
ergy in the images to be compressed will be found in the
lower frequency bands of those images’ wavelet decom-
positions (another smooth image assumption). Second, the
designers assume that the high energy values that do appear
in higher frequency bands will usually be predictable by
high energy values in the corresponding coefficients from
lower frequency bands. In terms of compression perfor-
mance, the first of these properties plays the greater role.
That is, while the performance of zerotree codes on data
sets that meet the first but not the second condition is still
quite good, zerotree codes perform poorly on data sets that
meet only the second of our two conditions.

When the assumptions upon which we build a com-
pression system fail, performance suffers. Just as a vector
quantizer designed for one source and operated on another
will not achieve the optimal performance on the source in
operation, a zerotree code used to compress an image that
has most of its energy in the high frequency bands, for ex-
ample, will yield poor performance, and can even lead to
data expansion rather than compression.

We are interested in compression systems that are used
to compress a variety of different images. To guarantee
good performance across a wide class of possible data
types, we can replace any single code with a family of
codes. Given a collection of possible source codes, the
optimal performance achievable with that collection is the
performance associated with compressing each data block
with the code from our collection that best matches the
statistics of that block. We will call a code that achieves
this performance an omniscient code, since both the en-
coder and decoder of such a code must somehow divine the
optimal code for each data block and use that knowledge
to switch appropriately among the codes in the collection,

Unfortunately, practical source codes cannot be omni-

0-8186-8183-7/97 $10.00 0 1997 IEEE
6 16

mailto:caltech.edu

scient. In a real compression system, the encoder has ac-
cess to the uncoded data, and thus can effectively choose
the best strategy for the data to be coded. The decoder,
however, has no basis upon which to choose the optimal
code, and thus a real decoder cannot be omniscient. As a
result, real data compression systems that optimally switch
strategies to match the statistics of an unknown or time-
varying data source must use overhead bits to describe to
the decoder which code will 6e employed on each data
block. We call such a switched coding strategy a two-stage
source code since the data is described in two sections or
stages. In the first-stage description, the encoder describes
a code from its collection. In the second-stage description,
the encoder describes the data using the code described in
the first stage.

A universal source code is a single data compression
algorithm that asymptotically achieves the optimal perfor-
mance on every source in some broad class of possible
sources. Most universal source codes in the literature can
be described in the above two-stage coding paradigm. Uni-
versal source coding theory has contributed both to the un-
derstanding of optimal coding performance and to the de-
sign of practical codes for image compression. Using this
theory, we gain insight into the design of collections of a
wide variety of types of codes including vector quantizers,
quantization matrices for JPEG-style codes, and transform
codes [3,4, 5 , 6 , 71.

We here consider the use of universal source coding
techniques to design a universal zerotree code, a collection
of zerotree codes that achieves, on every source in some
broad class of possible sources, performance approach-
ing the performance that would be achieved if the optimal
zerotree were employed on every data block. While [l]
and [2] provide examples of good zerotrees for the set
of natural images, they do not describe a general method
for designing zerotrees for other classes of images. Thus
in order to develop a weighted universal zerotree code
(WUZC), we must understand the design and operation of
both two-stage codes and single zerotree codes. Section 2
contains a description of the optimal WUZC encoding and
design algorithms. Section 3 treats the design of a single
zerotree. Section 4 contains experimental results.

2 Weighted Universal Zerotree Coding

In traditional zerotree coding, we use a wavelet decom-
position and quadtree to impose an ordering on a collec-
tion of image coefficients. At the root of this quadtree are
placed coefficients from the lowest frequency image sub-
band, below them are the next higher bands, below them
even higher bands, and so on. Image coefficients within
this structure are described one band at a time, with the
encoding process traveling only as deep in the given tree

617

structure as necessary to describe all values above an oc-
tavely decreasing threshold. The zerotree description is
most efficient when the smallest subtree containing all co-
efficients below a given threshold is as shallow as possible,
or equivalently, when that smallest subtree contains as few
below-threshold nodes as possible.

We use 2 = (X I , ..., x1) E X' to represent an 1-
dimensional data vector of wavelet packet coefficients.
Given an encoding algorithm like the one described in [2],
associated with any zerotree description Z is a quantizer
C = p o a with encoder a : XI -+ S and decoder p : S -+ 2'
that together map the input space X' of possible data vec-
tors to the output space of possible reproductions by
way of a binary prefix code S. (We will associate with each
zerotree a target final rate, and thus assume that a(.'), or
more explicitly la(.')l is a constant for any x" E x'.) Let

4 x ' , Z) = 4.',P(a(.')))

r(x',Z) = la(x') l

be the distortion and rate respectively achieved by quantiz-
ing x' with zerotree 2 and the Said-Pearlman encoder.

We next consider a collection Zl,Zz, ..., ZM of ze-
rotrees. Using the quantization interpretation of a two-
stage weighted universal code [3, 41, we consider this col-
lection to be a codebook of zerotrees. Thus we define a
"first-stage quantizer" f3 o &, with encoder : X N -+ s and
decoder f3 : s -+ C. The first-stage quantizer maps the in-
put space of possible data blocks to the output space of
possible zerotrees by way of the prefix code S. We here
assume that N is a multiple of 1. The first-stage encoder
chooses for each N-block a single zerotree. We then use
the chosen zerotree to encode each of the 1-vectors in x!.

Using the above first-stage quantizer, the total distor-
tion associated with encoding data block x with zerotree
B(a(.P)) is

and

NI'
42,P(&(.sJ))> = C d (d , P (& (x " .

i= 1

Likewise, the rate associated with encoding data block
with zerotree p(&(#)) is

NI'

.(.N,P(W))) = Ia(.N)I + .(d>&(.N)>,
i= 1

where the rate associated with the choice of a particular
zerotree includes both the rate needed to describe the cho-
sen zerotree and the rate used to describe the data given the
zerotree described in the first stage.

Using a Lagrangian in order to minimize the distortion
subject to a constraint on the rate, the optimal first-stage

encoder a* for a given p is

for every A?. Thus the optimal first-stage encoder chooses
the code in its collection that achieves the best average
Lagrangian performance in encoding the subvectors of a
given vector ,I?. We call the optimal first-stage encoder a
nearest neighbor encoder.

for a given first-stage
encoder Ci satisfies

p*(~) = argminE Z [d(XN,ij(F))+hr(X,p(F))l&(xN) =SI
The optimal first-stage decoder

for every 5 E S. In this case, the optimal zerotree would be
the zerotree that yields the lowest Lagrangian performance
at slope 3, on the distortion-rate curve. We call the process
of designing the optimal first-stage decoder decoding to the
centroid. Unfortunately, optimal zerotree design remains
an open problem. We consider a new iterative technique
for zerotree design in Section 3.

The code design algorithm employs an iterative descent
technique to minimize the expected Lagrangian perfor-
mance. We initialize the algorithm with an arbitrary pre-
fix code s and collection {P(f) : F E s} of zerotrees. Each
iteration proceeds through three steps.
1 Nearest Neighbor Encoding.

Optimize the first-stage encoder Ct for the given first-
stage decoder p and prefix code s.
Optimize the first-stage decoder 0 for the newly re-
designed first-stage encoder and the given first-stage
prefix code S.

Optimize the first-stage prefix code for the newly re-
designed first-stage encoder i? and decoder p. The opti-
mal prefix code 9 for a given first-stage encoder & and
decoder p is the entropy code matched to the probabili-
ties P{Ct(XN) = F}, for which the ideal codelengths are

Each step of the algorithm decreases the (non-negative) ex-
pected Lagrangian performance, and thus the algorithm is
guaranteed to converge.

While the system is designed for a target rate (controlled
by changing A), it retains its embedded binary description
and can therefore be used for early reconstructions and run
past its target rate if desired by the end user. Thus the code
is optimized for a target rate, but achieves good perfor-
mance for a wide array of possible rates.

3 Zerotree Design
Given the wavelet (or wavelet packet) decomposition

of a particular data set, we wish to order the coefficients

2 Decoding to the Centroid.

3 Optimizing the Prejix Code.

\PI= -logP{Ct(XN) = 57).

into the tree that best reflects the statistics of the given
data. Tree design incorporates minimum threshold de-
sign, coefficient ordering, and tree branching rate. (The
Said-Pearlman zerotree uses a quadtree structure and thus
a branching rate of 4). Optimal zerotrees are expected to
be data and rate dependent.

To design the optimal threshold, ordering, and branch-
ing rate, we must understand the tree properties that yield
good coding performance. As discussed earlier, the suc-
cess of zerotree codes relies primarily on two factors: the
use of the shallowest possible tree for a given minimal
threshold, and the use of a tree in which high energy coef-
ficients deep in the tree are well-predicted by correspond-
ing high energy coefficients closer to the tree’s root. No-
tice that the need for the second factor kicks in when the
first factor fails. That is, if all of the energy of the source
is contained in the shallower levels of the associated ze-
rotree, then the second factor becomes less significant. Re-
call also that the second factor alone does not yield good
compression performance. That is, a tree that contains a
lot of energy deep within its structure will not yield good
performance even when that energy is perfectly predicted
by lower levels of the tree. In designing our zerotrees, we
will therefore concentrate on the first of these two factors.
For simplicity, we do not include entropy coding in our ze-
rotree codes.

The zerotree design algorithm is an iterative descent
technique. We will initialize the zerotree with an arbi-
trary minimal threshold (or accuracy level) and branching
rate. Notice that the expected distortion associated with
a given zerotree is a function only of the minimal thresh-
old employed in that zerotree. Thus the optimal ordering
for a given threshold and branching rate is the ordering
that minimizes the expected rate with respect to the data
set. Roughly speaking, this expected rate is minimized
by ordering the coefficients from largest to smallest. This
ordering can be achieved in a number of different ways.
Most simply, we can order the coefficients according to
their average energy. Slightly better performance would be
achieved by ordering the coefficients according to the prob-
ability with which that coefficient exceeds a given thresh-
old.

Given a fixed ordering and minimal threshold, the opti-
mal branching rate is the branching rate that achieves the
lowest expected rate. For simplicity we assume a fixed
branching rate within a given zerotree. Since the number
of possible branching rates is relatively small, we here con-
sider all possible branching rates and choose the branching
rate that minimizes the expected rate with respect to a given
minimal threshold and ordering.

Given a fixed ordering and branching rate, the optimal
minimal threshold is the minimal threshold that results in

618

2o r
18 -

- - Said Pearlman

0 002 004 0.06 0.08 0.1 0.12 0.14

rate

Figure 1: Comparison of SQNR results on a collection
of combined text and gray scale images. The systems
tested include a single optimized-zerotree code and the
Said-Pearl zerotree code.

the lowest expected Lagrangian performance for that tree.
We here consider only thresholds of the form 2k for some
some integer k less than the logarithm of the maximal
wavelet coefficient magnitude. As a result, the number of
thresholds is likewise small, and the optimization of the
threshold is performed by exhaustive search.

By iterating the above ordering, branching rate, and
minimal threshold designs, we achieve a descent algorithm
on the expected Lagrangian performance that can be iter-
ated to convergence.

4 Experimental Results

In Figure 1, we compare the performance of a single
optimized zerotree to the performance of a single Said-
Pearlman zerotree. The optimized zerotree is designed
using a single 2400 x 2400 image scanned from a page
of IEEE Spectrum Magazine and tested on another page
from the same issue. Each page has roughly equal amounts
of text and gray scale material. The optimized zerotree
achieves up to 4 dB improvement over the Said-Pearlman
zerotree. Incorporation of the zerotree design algorithm
into the optimal weighted universal code design algorithm
is therefore expected to yield even greater experimental
performance gains.

References

[2] A. Said and W. A. Pearlman. A new, fast, and efficient
image codec based on set partitioning in hierarchical
trees. IEEE Transactions on Circuits and Systems for
Video Technology, 6(3):243-250, June 1996.

[3] P. A. Chou. Code clustering for weighted universal
VQ and other applications. In Proceedings of the IEEE
Intemational Symposium on Information Theory, page
253, Budapest, Hungary, June 1991.

[4] P. A. Chou, M. Effros, and R. M. Gray. A vector
quantization approach to universal noiseless coding
and quantization. IEEE Transactions on Information
Theory, IT-42(4):1109-1138, July 1996.

[5] M. Effros and P. A. Chou. Weighted universal bit allo-
cation. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
volume 4, pages 2343-2346, Detroit,MI, May 1995.
IEEE.

[6] M. Effros and P. A. Chou. Weighted universal trans-
form coding: universal image compression with the
Karhunen-Loeve transform. In Proceedings of the
IEEE International Conference on Image Processing,
Washington, D.C., October 1995. IEEE.

[7] M. Effros and P. A. Chou. Universal image compres-
sion. 1996. Submitted to the IEEE Transactions on
Image Processing December 18, 1996.

[l] J. M. Shapiro. Embedded image coding using ze-
rotrees of wavelet coefficients. IEEE Transactions on
Signal Processing, 6(3):243-250, December 1996.

6 19

