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Abstract 

I n  this paper, we introduce a general formulation f o r  
wavefront curvature correction an spotlight-mode S A R  im- 
ages formed using the polar-formatting algorithm (PFA).  
This  correction is  achieved through the use of a n  eficient,  
image domain space-variant filter which is applied as a 
post-processing step to PFA. Wavefront curvature defocus 
effects occur in certain S A R  collection modes that include 
imaging at close range, using low center frequency, and/or 
imaging very large scenes. Our formulation is  general in 
that it corrects f o r  wavefront curvature in broadside as well 
as squinted collection modes, with n o  computational penalty 
f o r  correcting squint-mode images. Algorithms such as the 
range migration technique (also known as seismic migra- 
t ion),  and a recent enhancement known as frequency do- 
m a i n  replication, FReD, have been developed to accommo- 
date these wavefront curvature effects. However, they ex- 
hibit n o  clear computational advantage over space-variant 
post-filtering in conjunction with polar formatting (PF2). 
This  paper will present the basic concepts of  the formula- 
t ion,  and will provide computer results demonstrating the 
capabilities of space-variant post-filtering. 

I. INTRODUCTION AND FORMULATION 

The classic approach to  SAR image formation from 
phase history data collected in the spotlight-mode has been 
the polar-formatting algorithm (PFA). In polar formatting, 
the collected phase history data are described in terms of 
a slice of the three-dimensional Fourier transform of the 
scene reflectivity data, obtained on a polar raster [l-31. An 
inverse Fourier transform of these data (as projected onto a 
chosen two-dimensional plane) forms the SAR image. The 
derivation of this technique relies upon the unrealistic as- 
sumption of strictly planar wavefronts in the transmitted 
microwave pulses. Any actual amount of curvature present 
in these wavefronts introduces two forms of distortion into 
the SAR image, as formed by the polar-format processor. 
First, there is a geometric distortion, which takes on the 

form of a keystone'. This distortion can be rectified in a 
straightforward manner by appropriate post-warping of the 
image, The second form of distortion is a quadratic, space- 
variant defocusing effect. The magnitude of this defocus 
effect is a function of the range and cross-range position of 
the target, and becomes greater for those targets placed 
further in range and cross-range from the scene center. 
This effect is not removable via post-warping, but instead 
requires space-variant refocusing of the formed image. The 
usual approach to  this situation has been simply to limit 
the size of the scene reconstructed, so that the effects of 
wavefront curvature are not realized. That is, it can be 
shown that by limiting the reconstructed image size to 

L = p z @  

where L is the radius of the scene, ro is the range from the 
radar to the scene center, pz is the cross-range resolution, 
and X is the radar wavelength, the quadratic defocus effect 
for any target in the scene will be held to less than 7~/4 
radians, resulting in only a negligible amount of smearing'. 

In this paper, we show that the computational bur- 
den involved in performing the space-variant restoration to 
remove the wavefront curvature defocusing effects is not 
particularly severe. For a certain set of imaging scenar- 
ios, it  can be shown to  be as small as 30% of the polar- 
format image formation time. The idea is to implement a 
space-variant image-domain filter, based upon an analyt- 
ical derivation of the phase error that is induced by the 
curved wavefronts. 

In [l], it is shown that the defocus effect of wavefront 
curvature on a spotlight-mode SAR image formed with po- 
lar formatting is a space-varying one that occurs in the 
cross-range (azimuth) direction only, at least for the condi- 
tion wherein the radar is operating at a range that is large 
compared with the diameter of the scene reconstructed, 
and the coIlection is taken at broadside. Under this as- 
sumption, the Fourier transform of the blur function can 
be shown to be phase-only and is given by3 
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where ko = 4r/X, ro is the standoff range of the radar plat- 
form, (20, yo) is the location of a target projected into the 

'See [l], pp. 361-363. 
'See [I], pp. 95-97. 
'See [l], pp. 361-363. 
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slant plane, and X is the phase-history (Fourier transform 
domain) frequency associated with the cross-range image 
dimension. 

In our general formulation for calculating quadratic 
phase error due to wavefront curvature, we remove the 
restriction that requires the operating range to be large 
compared to diameter of the scene reconstructed, thereby 
producing an exact solution for all standoff ranges and 
patch diameters. It is a general solution that takes into 
account not only broadside collection scenarios, but also 
squint-mode collections, where at mid-aperture, the radar 
platform is looking either backwards or forwards towards 
the center of the scene. This formulation is accomplished 
by first creating a geometric model of the imaged scene 
with respect to the radar’s flight path, and subsequently 
deriving an equation for the phase return from an arbi- 
trary point in the scene back to the radar platform. Next, 
the phase equation is represented as a polynomial via a 
two-dimensional Taylor series expansion. The linear, first 
order terms of this series represent the position of the tar- 
get in the scene, and include residual terms that induce 
the keystone warping. The second order terms, known as 
the quadratic phase error terms, account for the nonlin- 
ear defocus, or wavefront curvature effect, of targets in the 
imaged scene. Higher order terms are ignored, since they 
are typically small in magnitude and have a negligible ef- 
fect on the image distortion. Even for squint-mode collec- 
tions, regardless of the degree of squint, all second order 
phase error terms reduce to  zero, except the one associated 
with the cross-range (azimuth) direction. The value of this 
quadratic phase term is found to  be 

H ( X )  = 

+ 

2tan(B)r0 
r, ko 

+ 2rc - 3r0 + 2y0 
tan2(8)ro 

rcEo 

where rc M ro - yo + l /Z(z; /ro)  is the distance from the 
target to  the platform at mid-aperture, and B is the squint 
angle at aperture midpoint. Thus, even for an exact so- 
lution that considers squint-mode collection scenarios, the 
filter required to remove quadratic phase error remains one- 
dimensional, in the azimuth direction. This is significant 
in that the additional computational overhead associated 
with implementing a two-dimensional filter is completely 
avoided. If we again assume that the imaged patch size is 
much smaller than the standoff range, then equation (3) 
can be approximated by 

H ( X )  M 

roko 
(4) 

where x0,yo << r g .  While this approximation may not 
be sufficiently accurate for extreme close-in collections, its 
simplified form gives us clearer insight into the effects of 
standoff range and squint angle on quadratic phase errors. 
Note that when 0 = 0, this equation reduces to  that of (2 ) .  
That is, for a squint angle of zero, the general case reduces 
to  the more specific case of a broadside collection. While 
each term of (4) contributes to the overall quadratic phase 
error, the sum of the terms is complicated in nature. For 
example, when z o  = yo for some arbitrary nonzero value 
of 20, the first term of (4) contributes nothing to the error, 
while the next two terms contribute significantly, if 0 # 0. 
Conversely, when zo = 0, the first term contributes to the 
phase error for a nonzero yo, while the next two terms con- 
tribute nothing. In practice, we have found that the peak 
quadratic phase error over an imaged scene is comparable 
between squinted and non-squinted collections, when all 
other parameters remain unchanged. However, it is quite 
apparent that the peak phase error increases inversely with 
the standoff range or radar center frequency. This increases 
the rate of change of the quadratic phase over the imaged 
patch, which tends to increase the computational burden. 
This increase is not significant except in extreme cases of 
close-in imaging or very low frequency radars. 

11. FILTER IMPLEMENTATION 

By applying an appropriate spatially-varying filter to 
the image that is formed by the polar-format processor, the 
defocus effects induced by (3) can be compensated. The fil- 
ter kernel is constructed by calculating the quadratic phase 
error over the region of support covered by the filter, using 
the image location residing at the filter’s center, (zo, yo), 
as the reference point for calculating the error. This data 
is then conjugate multiplied, point by point, by the Fourier 
transform of the image data within the filtered region. This 
removes the quadratic phase error from that region of the 
scene, after which the data is inverse Fourier transformed 
back into the image domain. Alternatively, one may look 
at the process as a spatially-variant, image domain con- 
volution mask, derived from the Fourier transform of the 
quadratic phase error function at that point in the scene. 
In some instances, spatial convolution may be more compu- 
tationally efficient than using frequency domain filtering. 

This filtering concept was first introduced in [4] as a 
method to remove phase errors in polar-formatted data 
that are directly Fourier transformed, without first resam- 
pling the data onto a rectangular grid. Unfortunately, 
while mathematically sound, this is a computationally bur- 
densome method for removing polar format blurring be- 
cause of the extreme amount of distortion present. How- 
ever, as we will show, space-variant filtering is an effective 
way to remove the effects of wavefront curvature, which are 
generally much smaller than those of polar-format defocus. 
Space-variant filtering for wavefront curvature correction 
was first discussed in [5], but included only an approxi- 
mation for broadside-mode wavefront curvature error. In 
this paper, we have presented the equation needed for exact 
calculation of quadratic wavefront curvature error, for both 
broadside and squint-mode cases at all standoff ranges. 

The image is focused by moving the one-dimensional, 
space-variant filter across the image in the cross-range (az- 
imuth) direction, for each line of range data. Each subse- 



quent filter overlaps the previous by some amount c, and 
has a filter length of m. Thus, the separation between ad- 
jacent filters, s, is m - c. If the filter were changed at every 
pixel, in strict accordance with the expression of (3), the 
computational burden associated with filter implementa- 
tion could become excessive. Fortunately, the procedure 
can be made considerably more efficient than this by vary- 
ing the filter function only as rapidly as required to main- 
tain the residual defocus at an acceptable level. 

Each filter operation exactly compensates for the phase 
error of the image pixel at the filter’s center, but is only 
an approximation to  the correction for points surrounding 
it. The approximation worsens toward the edges of the fil- 
ter. Thus, the filter’s length, m,  which is one dimensional 
in the azimuth direction, is limited by the rate of change 
of the wavefront curvature error at that point in the im- 
age. In practice, the filter length should be sufficiently 
small to  allow no more than a14 radians of phase error 
across the aperture after correction. This ensures that the 
IPR mainlobe is narrow enough to keep image defocus to 
within sub-pixel limits. Furthermore, the overlap between 
adjacent filters, c,  must be sufficiently large to  accommo- 
date the support (width) of the defocus blur. The amount 
of overlap may be chosen larger or the filter length chosen 
smaller, without sacrificing image quality, if this helps to 
minimize the computational operations count, as shown in 

To further reduce the computational burden of wave- 
front curvature correction, a space-variant procedure for 
adjusting filter length and overlap can be implemented. 
The phase error at a point in the image is given by (3), 
and the instantaneous rate of change is given by its deriva- 
tive. These parameters are used to  determine the length 
and overlap of a uniformly sized and spaced post-filter, as 
well as the space-variant filter coefficients. Just as phase 
errors vary spatially, so do the requirements for filter length 
and overlap. While a worst-case filter length and overlap 
can be chosen which will correctly refocus all regions of 
the image, this is not computationally efficient. Instead, 
the filter length and overlap can be adjusted spatially, as 
is done with the filter coefficients, resulting in a significant 
reduction in computational burden when compared to  a 
fixed filter length and overlap. 

(5). 

B. OPERATIONS COUNT 

Each filter kernel of length m,  where m is typically a 
power of two, is multiplied, point by point, by the Fourier 
transform of the m image data pixels at the filter point in 
the scene. The data are then inverse Fourier transformed 
back into the image domain. In terms of complex multi- 
plies, this takes m Zogzm + m operations. Given a square 
image of n x n pixels, a filter overlap of c pixels, and a 
separation of s = m - c pixels, the overall operations count 
in terms of complex multiplies is found to  be 

mn2 
m - c  c, = - (logzm+ 1) . (5) 

The filter design puts a constraint on the maximum value 
of s, the kernel spacing, which is based on the extent of 
the quadratic defocus in the azimuth direction. Also, the 
filter kernel length, m, has a constraint on its maximum 
value, to ensure negligible residual defocus. However, as 

detailed in the previous section, s can be further reduced, 
or m reduced, while still obeying these constraints, in order 
to minimize the operations count in equation (5). Space- 
variant overlap and kernel sizing can further reduce com- 
putation time. 

111. C O M P U T E R  SIMULATION RESULTS OF PF2 

Figure 1 illustrates the effect of wavefront curvature cor- 
rection on a simulated point target lying near the edge of a 
patch. The parameters used for generation of the synthetic 
point target are shown in Table 1. For these parameters, 
note that (1) predicts that the maximum scene patch di- 
ameter that would be free of wavefront curvature defocus 
effects would be 381 meters. As a result, one would def- 
initely expect to see degradations in targets placed near 
the extreme range and cross-range positions of the 1000 m 
scene. Indeed, the target in the left photograph of figure 
1 exhibits nonlinear wavefront curvature distortion in the 
azimuth direction. The right photograph photo shows the 
same target after applying space-variant post-filtering. In 
this case, the filter size was chosen to  be 32 (cross-range) 
pixels wide, based on evaluation of the maximum rate of 
variation of the quadratic phase error function in the cross- 
range direction. (As described in the previous section, the 
criterion used here is that the amount of quadratic phase 
should not be in error by more than a14 radians for any 
point inside the filter, so that we guarantee negligible resid- 
ual defocus). The filter function was changed every 16 
cross-range pixels, and on every range pixel. For this ex- 
ample, this overlap is sufficient to cover the extent of the 
blur in the cross-range direction. Figure 2 displays the 
corresponding IPR’s for the target before and after range 
curvature correction. 

Table 1: Parameters For Generation of Synthetic Target 

Wavefront curvature processing time over the entire 
4096x4096 pixel image was less than three minutes on a 200 
MHz Sun Ultra workstation. This amounts to about 30% 
of the polar-format image formation time. For this imaging 
scenario, the entire PF2 computing time, including polar- 
format processing and the new space-variant post-filtering 
for wavefront curvature correction, was 569 seconds. 

Iv. COMPARISON OF PF2 T O  R A N G E  MIGRATION 
PROCESSING 

Two range migration processing techniques were imple- 
mented in FORTRAN on a 200 MHz Sun Ultra worksta- 
tion and compared to the results obtained from the PF2 
image formation algorithm in the previous section. The 
running times for these algorithms are listed in Table 2. 



The algorithms used for comparison are the range migra- 
tion algorithm (RMA) [6], and a modified, more computa- 
tionally efficient version of RMA known as FReD [7]. One 
of the drawbacks of the RMA algorithm is that it requires 
the phase history data to be upsampled in the along-track 
dimension at a rate that depends upon the collection ge- 
  me try.^ For some imaging scenarios, such as those in- 
volving significant squint angles, the time to compute the 
upsampled data may be quite large. The FReD algorithm 
was developed to avoid the upsampling requirements, and 
hence render migration processing reasonably efficient in 
these situations. For the case simulated here, the required 
upsampling ratio for RMA was approximately 2:l. 

Algor i thm 

broadside or 
overlap and width) squinted (26.8’) 

broadside 
FReD broadside 

Table 2: Execution Times for Three Algorithms in 
FORTRAN on a SUN Ultra 2 Workstation 

v. CONCLUSIONS AND SUGGESTED FUTURE WORK 

Overall, space-variant post-filtering for wavefront cur- 
vature removal is a computationally efficient, straightfor- 
ward extension of the traditional polar-format algorithm. 
It provides an exact solution to  the wavefront curvature 
problem for all standoff distances and patch sizes, and is 
effective for squinted as well as broadside data collections. 
It does not require subaperture processing and the associ- 
ated ”patchwork” reassembly of the image, nor is it itera- 
tive or have any dependence on the visual contents of the 
scene. Thus, the new polar-formatting with post-filtering 
algorithm (PF2) should be considered as a viable candi- 
date for a spotlight-mode image formation processor when 
wavefront curvature effects are present. 

Our FORTRAN implementation of the new algorithm, 
PF2, would indicate that it is more computationally effi- 
cient than the original version of the seismic migration tech- 
nique, RMA, and even more efficient than the migration 
processing version known as FReD, that avoids the need 
for along-track upsampling. However, FORTRAN timings 
are not the final word on algorithm efficiency, especially 
in situations such as this, where algorithms are not nec- 
essarily tuned to their maximum computational efficiency. 
A careful operations count needs to be performed to fur- 
ther investigate the relative computational merits of these 
techniques. Furthermore, the question of how the range mi- 
gration techniques can be applied to spotlight-mode SAR 
image collection geometries other than broadside needs to  
be more thoroughly studied. RMA becomes problematic 
at large squint angles, because the along-track upsampling 
demands under these conditions is severe. Also, it is not 
clear at this point whether or not RMA or FReD can be 
applied to  non-straight line collections. A comparison of 
these, as well as other algorithms that can accommodate 
wavefront curvature, such as the class of techniques known 
as ” subaperture processing,” should be conducted to  cover 
realistic imaging modalities. 

4See [6], pp. 480-481 and 487-489. 

Figure 1: Point Targets Before/After Correction 
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Figure 2: Point Target IPRs BeforejAfter Correction 

VI. REFERENCES 

[l] Jakowatz, Charles, et. al., Spotlight-Mode Syn- 
thetic Aperture Radar: A Signal Processing Ap- 
proach, Kluwer Academic Publishers, Boston, 1996. 
[2] Walker, J. L., ”Range-Doppler imaging of rotating ob- 
jects”, IEEE Trans. AES-16, 1980, pp. 23-52. 

[3] Asherman, D. A., et. al., ”Developments in radar imag- 
ing”, IEEE Trans. AES-SO, 1984, pp 363-400. 
[4] Kong, K. K. and Edwards, J. A., ”Polar format blur- 
ring in ISAR imaging”, IEE Electronic Letters Online. No: 
19950998, 15 June 1995. 
[5] Jakowatz, C. V. et al., ”Wavefront curvature correction 
in spotlight-mode SAR images using space-variant post- 
filtering”, SPIE 11th Annual Int. Symp. Aerospace De- 
fense Sensang and Controls Conference, 21 April 1997. 
[6] Carrara, W. et al., Spotlight Synthe t ic  Aperture 
Radar: Signal Processing Algorithms, Artech House, 
Boston, 1995. 
[7] Golden, A. et al., ”Migration processing of spotlight 
SAR data”, Proc. SPIE Symp. Algorithms for SAR Im- 
agery, Orlando, FL, April 1994. 


