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Extended Abstract:

This paper addresses the problem of recursively estimating the motion or displacement vector field (DVF) due
to the optical flow in images sequences. Some of the sources of difficulty involved in DVF calculation are the nonsta-

tionarity of the field, the ill posed nature of the problem and the presence of noise in the data.

The developed pel-recursive algorithms minimize the displaced frame difference (DFD) function defined by

Alryr—d(r)) = fi(r)— fe-1(r - d(r)) (1)

where r = [x, y|7 is the pixel location, d(r) = [dz, dy|T is the corresponding (true) displacement vector at the working
point r in the current frame f; and fi_, is the previous frame. The DFD is a function of the intensity differences and
it represents the error due to the nonlinear temporal prediction of the intensity field through the displacement vector.
It is apparent from (1) that the relationship between the DVF and the intensity field is nonlinear. An estimate of
d(r) is obtained by means of the Taylor series expansion of fi_1(r— d(r)) about the location (r— dg(r)), with dg(r)

representing a prediction of d{r). This results in

Alr,r= do(r) = V7 fic1(r - do())u(r) + e(r, do(r)) @)

where the displacement update vector u(r) = [ug,uy|” = d(r) — do(r), e(r, do(r)) represents the error resulting from
the truncation of the higher order terms and V = [6/6;, 6/6,]" is the spatial gradient vector. By applying Eq. (2) to
all points in a small area around the working point, and assuming constant image intensity along the motion trajectory

gives the following matrix-vector form expression:
z=0Gu+n (3:‘1

The observation vector z contains all temporal gradients Alr, r— dg(r)) stacked, the matrix G is obtained by stacking

the spatial gradient operators at each observation, and the error terms have formed vector n.



The solution fg(A) that minimizes the MSE of Eq. (3)i5 the pseudomverse estimate. Since it @n be guite

poor if the noise term is significant and for G is singular. In order to improve fgl A), regularization was used. This
technique deak with instabiliy and non-uniqueness in inverse problems. It imposes the assumption that the true
DVF is smooth, so that its solution & better than ng(A)

a(3) = (TG + 2QTQ) " g% (4)

where A controls the degree to which the solution will be regularized, and €@ is a regularization operator controling
the kind of smoothing (correction ) used.

This paper explores two scenarice: Als ascalar and A = [}, A]. In both cases, the estimate of the regularzation
parameter A used for computing Eq. (4015 computed according to the o oss-validation oiterion.

The GOV concept provides a way of testing the valdity of the regukrizmation parameter estimate A basad on a
posteriori knowledge (the available noisy mages). A GOV function V(A) s defined for each location r. The GCV
criterion 5 expressed as a nonlinear function whose mmimum cannot be determined analytically. Hence, the optimal

valies of A must be determined by means of numerizl alorithms.

The major contributions of this paper are: the extension of the ooss-valdation function princple to DVFE

estimation, and the use of DFD- based adaptive schemes for mloulation ofthe estimates of the regularization parameter.

Hesults for the two above-mentioned cses are compared to the Wiener filter solution
Wy iener (2] = (G7C 4 pI)7'G 72 (5]

where p = o2 /o2, It should be pomted out that both the observation noise mand the update vector uare considered

as being sero-mean and white with E[nnf] = o2l and E[uul] = o2, respectively.

Some experimental resulis can be found im Tablk 1 and Fig. 2. They were obtained by processing frames 16
e 17 of the Mother and Daughter sequence. Fig. | shows frame 16 of this sequence. The results from the proposed
alorithm are compared to the ones obtained by means of the Wiener fiter (Eq. (51 1.

Table 1: Comparison between the Cross-Validation algorithm and the Wiener filter.
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Fgure 1: Original frame 16.

Figure 2: Dispheoament vector field between fames 16 and 17.



