
B-spline Snakes and a JAVA interface:
An Intuitive Tool for General Contour Outlining

Patrick Brigger1 and Robert Engel Michael Unser
ImageMinds Biomedical Imaging Group

Imaging and Internet Technologies Swiss Federal Institute of Technology (EPFL)
Greenwich , CT, USA CH-1015 Lausanne, Switzerland

1 This work was mainly performed while employed with the Bioengineering and Physical Science Program, BEPS/ORS,
National Institutes of Health (NIH), Bethesda, MD, USA.

Abstract
We present a novel formulation for B-spline snakes

that can be used as a tool for fast and intuitive contour
outlining. The theory is implemented in a platform
independent JAVA interface, which allows real time
computation of the snake curve. In this paper, our main
focus is on two points. First, we propose a novel B-spline
snake formulation, where the intrinsic scale of the spline
model is adjusted a priori. It leads to a reduction of the
number of parameters to be optimized and eliminates the
need for internal energies. The approach solves the two
main drawbacks of traditional snakes (slow convergence
speed and difficult to adjust weighting factors for
internal energy terms). Second, we comment on our
experience using JAVA for the implementation of the
snake and for the design of the graphical user interface.
Our technique provides a very intuitive, user-friendly,
and platform independent tool for contour outlining,
generally applicable to a vast range of images. Several
biomedical examples of applications are included to
illustrate the versatility of the method.

1. Introduction

Many applications require the extraction of salient
image features such as edges, lines, subjective differences
in gray-level. Often, users are interested in computer
assisted devices that help to detect and outline an image
contour, but which still permit input of personal
knowledge and experience. Such an approach is
especially desirable in medical imaging, for the detection
of specific organs or other medical features of interest.
Often, two types of problems subsist: a) contour outlining
is either too elementary and subjective (manual outlining

using a pencil tool) or b) contour outlining is automatic,
and specific to a particular problem, usually requiring
important computational resources and not allowing a
manual intervention.

The snake as an energy minimizing “spline” has
found wide acceptance and has proven extremely useful
in applications for medical analysis [1], feature tracking
in video sequences [2], 3D object recognition[3], stereo
matching [4, 5]. The original snake by Kass et. al. [5] is
the solution of a functional minimization problem of
Euler equations. The snake gives an elegant method to
simulate an elastic material, which can dynamically
conform to local image features. It is guided by external
and internal forces. The former are given as a user
supplied function, while the latter is determined by the
shape of the curve in terms of first and second order
derivatives. While it provides an elegant mathematical
solution, it has two main drawbacks: 1) a large number
of control points subject to optimization, 2) an explicit
formulation of the smoothness constraint, which requires
the knowledge of difficult to determine a priori
weighting factors. The associated problems of slow
convergence speed and difficult user-interaction have
been addressed in a number of publications [6, 7, 8].

The recent introduction of B-snakes provides an
alternative approach to snakes, which also circumvents
many of the inherent problems [4, 9, 10]. The B-snake is
mainly characterized by the following points: 1) few
parameters, and 2) smoothness implicitly built into the
model. In addition, the B-snake approach naturally
permits the local control of the curve by controlling
individual control points.

The motivation for our work is to extend the basic
concept of B-spline snakes in order to improve their
efficiency, speed, and to provide a means for intuitive
interaction. Our main contributions are as follows: First,

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

we introduce a scale parameter for the B-splines, which
allows us to control the smoothness of the snake
implicitly. Second, the proposed formulation eliminates
the need for curve-internal energies, making the snake
more convenient to handle because no internal energy
weight terms need to be determined. Third, we discuss
object-oriented implementation issues, and the adequacy
of JAVA as programming language.

In the next section, the B-spline snake will be
formally derived. Section 3 discusses some
implementation issues, and in Section 4, a number of
examples are presented.

2. B-spline snakes:
Parametric formulation

In this section, the goal is to introduce our parametric
B-spline snake formulation, which is characterized by a
scale parameter for the splines. A two-dimensional B-
spline curve is defined by its control points as:

)10(

)()())(),(()(

max −=≤≤

−⋅== ∑
∈

Ntt

ktktstst
Zk

n
yx βcs

(1)

where)(tsx and)(ts y are the x and y spline

components, respectively, both parameterized by the
curvilinear variable t. N denotes the number of control
points, which corresponds to the number of primary B-
spline coefficients, denoted by))(),(()(kckck yx=c . As

the sum needs to be carried out over the domain of all
integers, the remaining coefficients are found through
appropriate boundary conditions. Based on (1), B-snake
formulations have been proposed, which minimize an
energy functional that consists of an external, user
supplied term, and an internal, curve specific term [4, 9,
10]. While the formulation allows a continuous
representation of the curve, it still is subject to some of
the same limitations as in the traditional approach. The
idea presented here is to eliminate the term
corresponding to the internal energy and to introduce a
variable knot spacing between the spline knot points. An
increased knot spacing will essentially have the same
smoothing effect on the solution. Thus, we consider a B-
spline curve with a coarser knot spacing 1>h :

)10(

),()()(

max −=≤≤

−⋅= ∑
∈

hNtt

k
h

t
kt

Zk

n
hh βcs

(2)

The new smoothness parameter is thus h. Typically,
we will take h to be an integer m, which will reduce the
number of degrees of freedom (B-spline coefficients) in

the same proportion. The end of the curve is given at

maxtt = , which is dictated by the desired resolution of the

final curve. In the discrete case, we only render the curve
for t integer, in which case we associate 1max += tM .

Clearly, if we specify N (i.e. the number of snake control
points) and M, the curve resolution, then the knot
spacing is NMh /= and therefore the smoothness
constraint for the curve is defined. The freedom of the
curve has been reduced by the same amount, resulting in
a smoothing and stiffening of the curve. Increasing the
number N of control points will reduce the knot spacing,
and consequently it will reduce the smoothing effect of
the curve. The energy term may now be formulated in the
following way:

∑
=

=
M

i
yx isisgk

0

))(),(())((cξ (3)

where)],([),(yxfLyxg = . L is an image processing

operator (for example, gradient magnitude) that
enhances the contours of interest in the image f(x,y). The
operator may include a smoothing component to reduce
the likelihood of the snake getting trapped in a local
minimum. Optimization of (3) is carried out using a
conjugate gradient algorithm [11]. With this algorithm,
the direction of search for each independent variable is in
an A-orthogonal direction with respect to the other
variables. In the case of a quadratic potential function,
the procedure leads to a scheme where exactly one step is
done in every search direction. In other words, the
principal idea is that once a parameter is optimized, the
remaining parameters are moved in directions conjugate
to the previously optimized parameters, such that those
are not modified any more. An iterative scheme is used
for non-quadratic potential function.

In Fig. 1, we demonstrate the similar optimization
performances of the proposed B-spline snake formulation
without internal energies, versus the traditional snake
formulation [5] with internal energies. The comparison
is based on a binary test image consisting of a vertical
line, of which a small part has been displaced to the left
(see Fig. 1, initial contour). In order to obtain a smooth
force function, the binary image is smoothed by a two
dimensional Gaussian, with 5=σ . Optimization is
formulated as a minimization problem, and hence the
optimal snake position is on the line. Eleven control
points that have been set manually at unequal length
intervals characterize the initial snake curve. Depending
on the smoothness requirements of the final curve, two
different results can be anticipated from the optimization.
a) The resulting curve is vertically centered on the longer
line, being unaffected by the small displaced part. Such

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

an outcome corresponds to an important smoothing
constraint. b) The resulting curve has a “bump” and is
attracted towards the small displacement on the left. This
outcome reflects a less severe smoothness requirement.

First, the traditional snake is computed with various
weights for the internal energies. Each discrete curve
point is independently optimized and attracted to the
closest minimum by setting weights for the stretching
and bending energy to zero (Fig. 1a). A weight of

1.0=stretchα and 1.0=stretchβ tends to pull the “bump”

towards the right (Fig. 1b), however, does not produce a
straight curve yet. A weight of 2.0=stretchα
and 2.0=stretchβ produces an almost flat curve (Fig. 1c).

This type of snake proves to be very flexible in that the
user can choose among a large number of smoothness
requirements by adjusting stretchα and stretchβ . The

feature may also represent a drawback for certain
applications, because of the associated difficulties in
choosing the correct weighting factors, by either
empirical of automatic means.

The B-spline snake incorporates smoothness through
different knot spacings. The knot spacing, NMh /= ,
where M is the number of interpolated points and N is
the number of control points, can be changed by either
varying M or N. For this example, we have decided to
employ the same number of control points as for the
traditional snake, and hence h is changed by changing
the number of interpolated points M. A knot spacing of
h=1 signifies that no points are interpolated between
control points. A B-spline of degree one corresponds
exactly to the above experiment with zero weights, and
the result is identical (Fig. 2a). Using a B-spline of
higher degree, control points are no longer completely
independent. For all remaining experiments, we have
used a B-spline of degree three, because it leads to

visually pleasant curve
a) b) c)

Figure 1: Traditional snake: Initial contour and optimization
with different internal energies.

a) b) c)
Figure 2: B-spline snake: Initial contour and optimization with
different knot spacings.

representations. The optimized result with h=2 is shown
in Fig. 2b. Note that there is one interpolated point
between two control points. The point helps attracting
the curve towards the longer line. An increased knot-
spacing with h=3 uses two interpolated values between
two control points for computation of energy (Fig. 2c). In
this configuration, these points manage to fully attract
the curve towards the longer line, and the “bump”
disappears. The experiment demonstrates the similar
effect of a variable knot spacing and of internal energies
on the smoothness of the final snake curve.

3. Object-oriented implementation using
 The JAVA programming language

 Java was born three years ago. Every since, it has

attracted programmers’ attention, mainly because of its
ability to run through web browsers, providing
sophisticated and animated web pages. The power of
Java, however, goes much further than that. It is a
language that naturally supports an object-oriented
implementation approach, being more convenient and
less error prone than C++, for example. Furthermore, its
ability to run on different computer platforms makes it
attractive to stand-alone applications as well. For image
processing, it has not been widely used so far, because of
the slow performance capabilities of the interpreter. New
improved just-in-time compilers and native compilers,
however, have increased execution speeds. We have
successfully implemented the B-spline snake in a Java
framework, with real-time curve rendering speeds. Curve
optimization requires less than 10 sec. on a 166MHz
Pentium II Processor for a snake curve with 4 control
points.

 The B-spline snake algorithm design is object-
oriented. In other words, the basic algorithm is designed
to optimize an object of type Function with some given
boundary conditions of type Boundary. Given such a
framework, it is then possible to define an object

αstretch = 0.0

α bend = 0.0

αstretch = 0.1

αbend = 0.1

αstretch = 0.2

α bend = 0.2
Initial contour

a) h = 1 b) h = 2 c) h = 4

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

FunctionSpline derived from Function, as well as
different boundary objects (BoundaryPeriodic,
BoundaryMirror, etc.) derived from Boundary. Such a
design is very general and allows the introduction of new
functions and boundary conditions at any time, without
having to change the main program. From our
experience, the Java language lends itself extremely well
for such an implementation, and usually allows a
development in a shorter time than C++, for instance.

4. Application results

Typically, it is routine medical practice for a
technician to outline the boundaries of the liver, spleen,
kidneys, etc. in CT scans. Often, the standard imaging
tools consist of an interface that allows manual border
tracing using the computer mouse. Technicians face
several problems related to that task. First, the hand
drawn boundary is subject to small, uncontrollable hand
movements that result in a noisy boundary. Second, often
the technician does not have the possibility to pause in
the outlining process. Also, a curve that is not considered
satisfactory often has to be redrawn in its entirety.

We have asked an experienced technician to roughly
outline the boundaries of the corpus callosum using the
B-spline snake concept (Fig. 3a). The initial curve is
then optimized and the final segmentation result is
shown in Fig. 3b.

Another example is given in Fig. 3. The goal here is
to detect the endothelial wall in an intravascular
ultrasound image sequence that has been obtained by
constant pull back of the ultrasound device. The initial
contour is placed manually in the first frame (Fig. 4a).
The snake is optimized and attracted to the endothelial
wall (Fig. 4b). The result is then automatically
propagated to the next frame, where it is again
optimized. This process is iterated through the entire
image sequence, and yields a 3D segmentation of the
coronary wall. The segmentation result can be displayed
as a 3D body using surface rendering techniques. The
visualization program is also implemented in Java, and is
shown in Fig. 5.

5. Conclusions

We have presented a novel implementation of the B-
spline snake, which is characterized by a variable knot
spacing. The approach eliminates the need for internal
energies. Hence, this type of snake gives an intuitive way
of user-interaction, because it does not require
adjustment of weighting factors. Also, it features fast
convergence speeds, because of the reduced number of

control points. We have discussed the possibility of an
implementation using Java. Our experiments show that
the language is fast enough for real-time computation of
the curve, fast optimization, as well as 3D surface
rendering of the segmentation result. Various bio-
medical examples have illustrated the versatility of the
method.

a)

b)

Figure. 3: Outlining of the corpus callosum: a) initial curve
and b) automatically optimized curve.

a)

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

b)

Figure 4: Example of an ultrasound sequence of the coronary
artery. a) initial, manually placed contour, b) automatically
optimized contour. For this example, only four control points
were necessary.

Figure 5: 3D representation of a segment of the coronary
artery.

References:

[1] A. Klein, T.K. Egglin, J.S. Pollak, F. Lee and A. Amini,
"Identifying vascular features with orientation specific
filters and B-spline snakes", Computers in Cardiology,
pp. 113-116, 1994.

[2] M. Hoch and P. Litwinowicz, "A semi-automatic system
for edge tracking with snakes", The Visual Computer,
vol. 12, pp. 75-83, 1996.

[3] J. Wang and F. Cohen, "Part II: 3-D object recognition
and shape estimation from image contours using B-
splines, shape invariant matching, and neural networks",
IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 16, no. 1, pp. 13-23, January, 1994.

[4] S. Menet, P. Saint-Marc and G. Medioni, "B-snakes:
Implementation and application to stereo", in Image

Understanding Workshop, pp. 720-726, Darpa,
September, 1990.

[5] M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active
contour models", Internat. J. of Computer Vision, pp.
321-331, 1988.

[6] A. Amini, T. Weymouth and R. Jain, "Using dynamic
programming for solving variational problems in vision",
IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 12, no. 9, pp. 855-867, September,
1990.

[7] K. Lam and H. Yan, "Fast greedy algorithm for active
contours", Electronics Letters, vol. 30, no. 1, pp. 21-23,
1994.

[8] G. Xu, E. Segawa and S. Tsuji, "Robust active contours
with insensitive parameters", Pattern Recognition, vol.
27, no. 7, pp. 879-884, 1994.

[9] M. Flickner, H. Sawhney, D. Pryor and J. Lotspiech,
"Intelligent interactive image outlining using spline
snakes", in 28th Asilomar Conference on Signals,
Systems, and Computers, vol. 1, pp. 731-735, 1994.

[10] M. Wang, J. Evans, L. Hassebrook and C. Knapp, "A
multistage, optimal active contour model", IEEE Trans.
on Image Processing, vol. 5, no. 11, pp. 1586-1591,
November, 1996.

[11] E. Polak, Computational methods in optimization. New
York: Academic Press, 1971.

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

