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ABSTRACT 

A new approach for the segmentation of still and video SAR 
images is described in this paper. A priori knowledge about 
the objects present in the image, e.g., target, shadow, and 
background terrain, is introduced via Bayes rule. Poste- 
rior probabilities obtained in this way are then anisotropi- 
cally smoothed, and the image segmentation is obtained via 
MAP classifications of the smoothed data. When segment- 
ing sequences of images, the smoothed posterior probabili- 
ties of past frames are used to learn the prior distributions 
in the succeeding frame. We show, via a large number of ex- 
amples from public data sets, that this method provides an 
efficient and fast technique for addressing the segmentation 
of SAR data. 

1. INTRODUCTION 

In this paper we present a novel method of segmenting Syn- 
thetic Aperture Radar (SAR) images. The segmentation of 
SAR data has received an increasing amount of attention 
from the image processing community in the past years; see 
for example [2, 31 and references therein. 

The SAR images used in this paper are part of a well- 
known public data set provided jointly by DARPA and 
Wright Laboratory as part of the Moving aad Stationary 
Target Acquisition and Recognition (MSTAR) program [lo]. 
Figure 1 shows a typical example from the data set. These 
are images of various military and synthetic targets taken 
from an airborne platform at various angles. Most of the im- 
ages are 128 pixels square and are characterized by a grain- 
iness that makes direct segmentation of the h g e t  difficult. 
As we show below, the introduction of prior information 
about the image significantly facilitates the segmentation 
process. 

Since noise is in general non-additive, anisotropic diffu- 
sion [4] and related techniques directly applicsd to the image 
do not produce satisfactory results. Our approach follows 
the technique of [7, 8, 91, originally developed for MRI seg- 
mentation, and combines Bayes’ rule with anisotropic diffu- 
sion, introducing a priori knowledge into the segmentation 
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process and solving the non-additivity problem of the noise. 
We also extend this approach to derive a novel method for 
the segmentation of video data, incorporating basic learning 
capabilities to the knowledge. 

2. BASIC MODEL FOR STILL IMAGES 

The model we employ begins with the assumption that the 
image is composed of n classes of objects. For sequences 
of images, this value n is assumed constant, although this 
is just a technical limitation introduced mainly to facili- 
tate the discussion. In this paper we will assume three 
classes, corresponding to the target, its shadow, and the 
background terrain. The technique is general and can be 
applied to any number of classes. The goal of our segmenta- 
tion is to determine to which class each pixel in each image 
belongs. Our basic model assumes that the value of each 
pixel in a given class can be thought of as a random vari- 
able with a known distribution, and that these variables 
axe independent across pixels. Thus, for the case of normal 
distributions (see below for extensions), the likelihood of a 
particular pixel i having a certain value w given that it is in 
class c E {target, shadow, background} is: 

where i is an index ranging over all pixels in the SAR image, 
vi is the value of the pixel, and Ci is its class. As usual, pC 
and uc denote the mean and standard deviation of class c; 
these are assumed known. In practice, these parameters are 
estimated from a set of sample images. When segmenting 
sequences of images, we have tried relaxing the assumption 
of normally distributed intensities. This is described below. 

Next, we assume that there is some known prior prob- 
ability that a particular pixel will belong to a certain class. 
For single-image data sets, we assume a homogeneous prior, 
i.e., that Pr(Ci = c) is the same over all spatial indices i. 
It is, however, possible to incorporate a priori knowledge 
about the image here, for example if it were known that 
the target is more likely to be near the center of the iniage 
than near the edge. For sequences of images, we have used 
a learned prior, as described below. 

Given a set of intensity distributions Pr(K = vlCi = c) 
and priors Pr(Ci = c), we can apply Bayes’ Rule from ele- 
mentary probability theory to calculate the posterior prob- 
ability that a given pixel belongs to a particular class, given 
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its intensity: 4. EXAMPLES 

Pr(K = vlCi = c) Pr(C; = c) 
E, Pr(K = vlCi = y) Pr(Ci = y) ' Pr(Ci = clT/, = v) = 

(2) 
Our proposed approach is to calculate the posteriors 

Pi" := Pr(Ci = c l x  = w) using the given distributions and 
( 2 )  above, and then to apply anisotropic smoothing to each 
P' (note that the denominator is just a normalization con- 
stant that can be "ignored"). Specifically, we have chosen 
to smooth by evolving P' according to a discretized version 
of the partial differential equation 

-- aP" - ((P,)zP& - 2P,P,P,", + (P;)2Pyy)l'3. (3) at 

This equation defines the affine geometric heat flow, under 
which the level sets of P" undergo affine curve shortening. 
This particular diffusion equation was chosen because of 
its affine invariance, because it preserves edges well, and 
because of its numerical stability and ease of computation. 
See [ l ,  5, 61 for details and other applications of this filter. 
Once again, the technique is not limited to any specific 
selection of the edge preserving filter (e.g., in [7, 8, 91 the 
original Perona-Malik flow is used for MRI). 

The final segmentation is obtained using the maximum 
a posteriori probability estimate after anisotropic smooth- 
ing. That is, 

arg max Pr*(Ci = cJV, = v) 
C E {target, shadow, background} 

(4) 
where Pr*(Ci = c l x  = v)  is the smoothed posterior prob- 
ability. More details on this technique, and its relation to 
other approaches such as MRF and relaxation labeling, may 
be found in [7, 8, 91. 

3. EXTENSIONS TO VIDEO DATA 

When segmenting sequences of images, we have extended 
the model so that information from one frame is used in 
the segmentation of the next one. By far the most effective 
way we have found to do this is by modifying our assump- 
tion of homogeneous priors. In particular, we have learned 
these priors. We have used the smoothed posteriors P' from 
one frame as priors Pr(Ci = c) in the segmentation of the 
next frame. We have also tested relaxing our assumption 
that the pixel intensities are distributed according to fixed 
normal distributions. We learned the distribution param- 
eters of the normal distributions from frame to frame by 
calculating new sample means and variances based on the 
segmentation of earlier images. Finally, we completely re- 
moved the assumption that the intensities are normally dis- 
tributed. This was done by learning the sample distribution 
of intensities within each class as images were segmented, 
and then using this distribution as Pr(K = w(Ci = c) in (1) 
when segmenting succeeding frames. 

Recapping, we can learn the distributions from previous 
frames in the case of video data, or from examples in the 
case of still images. 

The Wright Laboratories' SAR image data is stored as 4- 
byte floating point data in separate magnitude and phase 
blocks. Only the magnitude block was used in our seg- 
mentation. The data was scaled to range between 0.0 and 
255.0. 

In order to get initial estimates for yc and o,, a few 
images were segmented by hand. Once areas of each image 
were identified as either target, shadow, or background, the 
sample mean and standard deviation of the values of the 
pixels in these areas were calculated. These values were 
then used for pc and uc in (1) and (2). We found that a 
single set of values for the parameters pc and uc worked well 
for many different targets and viewing angles. The values 
used in the segmentations below were (for still images): 

Next, values for Pr(C, = c )  were chosen. We have found 
that the segmentation process is quite robust with respect 
to these values. In fact, Pr(Ci = c )  provided sat- 
isfactory results. However, when segmenting sequences of 
images, significant gains in speed are possible through the 
use of adaptive priors, as described above. 

To segment a singular image, the data was read and 
scaled. The image itself was then smoothed directly by ap- 
plying (3) for a small number of iterations, typically three. 
Next, the posterior probabilities were calculated using (1) 
and ( 2 ) ,  and the parameter estimates (5),(6) above. The 
posterior probabilities P" were then smoothed using (3) for 
a number of iterations. After each iteration, the three prob- 
abilities P" were renormalized so that their sum was one. 
Ten iterations was the average number required to produce 
a good result. Whenever (3) was applied, the maximum 
time step which ensures numerical stability was used. The 
final step in the calculation was to use (4) to determine 
the class of each pixel. The results were saved as images so 
that they could be compared visually to the original. These 
results are shown below in figures (1)-(8). For all of these 
segmentations, (3) was applied three times to the original 
image and ten times to the posterior probabilities. 

To segment a sequence of images, the first image in the 
sequence was segmented as above. The smoothed poste- 
rior probabilities P" were then used as prior probabilities 
in the segmentation of the second image, and similarly for 
all succeeding images. As with singular images, sequences 
of segmented results were saved as images. The results 
are given below in figures (9) through (16), along with the 
prior probabilities used in segmenting each frame. For all of 
these segmentations, (3) was applied two times to the orig- 
inal image and to the posterior probabilities as well. The 
small amount of smoothing needed makes the average per- 
frame segmentation time significantly smaller than the av- 
erage time required to segment still images. Note that the 
amount of residual noise in the segmentation drops from 
frame to frame. By the tenth image, the speckles in the 
segmentation have practically disappeared. We could have 
smoothed the earlier frames more to remove this noise, but 
we have smoothed all frames equally here to show how the 
segmentation improves as the prior adapts. 
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We also tried using adaptive intensity distributions from 
frame to frame. We did this by calculating new sample 
means and variances pLC and cC based on the segmenta- 
tions of earlier images. As a further generalization, we 
tried relaxing the assumption of normally distributed in- 
tensities. This was done by keeping track of the actual 
distribution of intensities within each segmented class as 
frames were processed, and then using this distribution 
as Pr(K = vlCi = c) in (1) when segmenting succeeding 
frames. In general, we did not see a marked improvement 
over the static distribution model when using either of these 
methods. We believe that this is another indication that our 
basic method is robust. 

5. CONCLUDING REMARKS 

In this paper we have used the technique introduced in [7] 
for the segmentation of SAR data. We also extended this 
general approach to the segmentation of video data. The 
result is a fast and reliable algorithm that segments SAR 
data based both on prior and learned information. 

Simple prior distributions and adaptation techniques 
were used in this paper, since the results obtained were 
already satisfactory. For more difficult data, it is possible 
to introduce more sophisticated multi scale texture models 
for the likelihood of the background. Another possible ex- 
tension will be to consider that n, the number of classes in 
the image, is not given and needs to be estimated as well. 
This can be done for example via EM type algorithms. Note 
although that since the scheme here described is extremely 
fast, especially for video data were the number of smooth- 
ing steps is dramatically reduced, a brute-force search for 
n in a given range might be good enough for a number of 
applications. 
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Figure 1: Typical SAR Image - A Tank 
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Figure 2: Smoothed Posteriors and Segmentation of Figure 
1. 

599 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 18,2010 at 13:42:27 EDT from IEEE Xplore.  Restrictions apply. 



20 

.lo 

60 

80 

100 

120 

o m 40 BO 80 IW 120 11 

Figure 3: Armored Personnel Carrier 
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Figure 4: Smoothed Posteriors and Segmentation of Figure 
3. 
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Figure 5: Second Tank 
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Figure 6:  Smoothed Posteriors and Segmentation of Figure 
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Figure 7: Second Personnel Carrier 
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Figure 8: Smoothed Posteriors and Segmentation of Figure 
7. 
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Figure 9: Video Sequence Frame 2 
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Figure 11: Video Sequence Frame 4 
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Figure 15: Video Sequence Frame 8 
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Figure 16: Priors and Final Segmentation of Figure 15 

Figure 14: Priors and Final Segmentation of Figure 13 
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