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Abstract—We consider the problem of coding images for trans- hopping over links of different capacities, and upon encounter
mission over error-prone channels. The impairments we targetare of a low capacity link, packets must be dropped. Another
transient channel shutdowns, as would occur in a packet network- common problem is network congestion: if upon arrival of a

when a packet is lost, or in a wireless system during a deep fade: o .
when data is delivered it is assumed to be error-free, but some of packet at a switching node the local buffer is full, that packet

the data may never reach the receiver. The proposed algorithms has to be dropped. In the case of wireless communication,
are based on a combination of multiple description scalar quan- during a deep fade, the probability of decoding error at the
tizers with techniques successfully applied to the construction of receiver becomes very high, and most of the received data is
some of the most efficient subband coders. A given image is en-\seless; resulting in discarding data frames received during

coded into multiple independentpackets of roughly equal length. S . .
When packets are lost, the quality of the approximation computed the fade. In these (and other) transmission scenarios, it is

atthe receiver depends only on the number of packets received, but Feasonable to assume that there are periods of time during
does not depend on exactly which packets are actually received.which the error correcting codes used at the lower layers of the
When compared with previously reported results on the perfor-  system architecture ensure error-free delivery of the transmitted
mance of robust image coders based on multiple descriptions, on data, but that occasionally some data will be lost.

standard test images, our coders attain similar PSNR values using Besides th f fi d .
typically about 50—-60% of the bit rate required by these other esides the use of error correcting codes, many communi-

state-of-the-art coders, while at the same time providing signif- Cation systems and storage devices prodiersityto combat
icantly more freedom in the mechanism for allocation of redun- possible channel impairments. For example, in the context of

dancy among descriptions. ATM networks, multipath connections are desirable because
Index Terms—Error resilience, image coding, joint €ven if an intermediate switching node gets temporarily con-
source/channel coding, multiple description source coding. gested (thus resulting in a transient high rate of cell losses), it

is less likely that such an event will occur on nodes along all
paths simultaneously [25]. In the case of redudant arrays of in-
expensive disks (RAID’s), data is stored in multiple disks to pro-
A. Need for Error Resilient Data Compression Algorithms  vide resilience against individual disk failures [30]. In wireless

HE HIGH performance achieved by state-of-the-afyStems, multipath and Doppler diversity are used to combat
T image/video coding algorithms, combined with thdhe fading effect [23]. In channels that undergo burst errors, in-
sustained growth of the Internet and cellular networks over tkfleaving is used to create an illusion of diversity, in which a
last few years, has resulted in the emergence of a new fanfiymber of lower capacity nonbursty channels are seen by the
of communication services which involve the delivery ofOurce.
image/video data over error-prone channels. A most commorPUr main goalin this paper is to develop data compression al-
form for these errors is that of transient channel shutdowr@@rithms capable of producing representations forimages which
For example, a typical network transmission might involve daf{€ robust to the presence of errors of this nature. Not specifi-
cally for images, but in the context of coding an arbitrary in-
formation source, this problem has been thoroughly studied al-
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give a bound on the distortion in the reconstructed signal, while  results are attained at very low computational complexity:

if both are received we can attain another bound that is lower. our coders require only a single pass over the array of
coefficients, in raster order.

B. Related Work e Our coders provide many more degrees of freedom in

specifying the amount of redundancy to be allocated to

Multiple description codes have been used before in the con- given images, when compared to other state-of-the-art

text of robust image coding. The first MD image coder that we coders
are aware of was proposed by Vaishampayan, consisting of arn.. ' . : . : .
extension of a JPEG coder using MD scalar quantizers [3%] rélgnal processing techniques involving carefully designed

) ansforms have been studied recently, as a means of con-
Wanget al. proposed another MD extension of a JPEG COdertructing multiple descriptions of a source [11], [13], [19],

using a class of pairwise correlating transforms to create ;Eb%]' While these techniques are known to have undesirable
MD’s [35]. Goyalet al. apply the more general transforms the symptotic properties in the high bit rate regime (e.g., the

proposed in [11], [13] to the development of another MD exs_irlgle-channel distortions do not go to zero in general as bit

tension of JPEG [12]. Chung and Wang use lapped orthogonal~". .
transforms to construct yet another MD extension of JPEG [‘/Ilrj;l € increases), they are generally believed to perform well at

. . : . w rates. On the other hand, design techniques for MD scalar
Using more state-of-the-artimage coding techniques, we pro-

osed a MD wavelet coder, of which this paper is an extend?H‘f’lmizerS are based on making certain high rate approxima-
P ' hap ions, thus raising the issue of whether these quantizers can be

version [27]. Along similar lines, Srinivasan and Chellappa pro-~_"'". . . . o
4 . sed in typical medium to low rate regimes. Further motivation
pose a MD extension of a very high performance subband codéer ) . -
) ; . or the use of MD scalar quantizers in the specific case of
[15], using MD scalar quantizers [31]. Jiang and Ortega pro- . : ) .
X : Images is provided by the fact that, asymptotically at high
pose an MD extension to the SPIHT coder of Said and Pearlman ) . .
. . rates, good transforms to use in a single description coder are
[22], by separating Zerotrees into polyphase components [1

Rogers and Cosman propose to rearrange bits at the outpu? of good transforms to use in a MD coder [3]. In this work we

one configuration of the SPIHT coder, in away such that the |Osgow_the feasibility .Of MD scala_\r quantizers, fora rea_l source
. §.e , images), and in the medium to low bit rate regime, thus
of one packet results in an error that does not propagate beyond

the image region contained in that packet [21]. Mehal pro- providing strong support for the usefulness of these quantizers

pose the use of error correcting codes of different strengths gyen when the high rate assumptions made in their design are

ap:
X : : . ; relaxed.
plied to different portions of a progressive bit stream such aSThe rest of this paper is organized as follows. In Section II, we

that generated by the SPIHT coder [17], Rresent the design and parameter optimization of a MD image

The problem of breaking an image into pieces and then bei 95 . ) ) .
) ; . _cading algorithm. In Section Ill, we generalize the previous con-
able to reconstruct it from an arbitrary subset of these piec

seﬁ'uction from the case of two descriptions to the case of an arbi-

is analogous to the problem of optical holography. For digit o X
images, Brucksteiet alfirst proposed two techniques for the?rary number of descriptions. In Section IV we present thorough

computation of digital holograms: one of them is based Onexperlmental results, and finally, in Section V, we present con-

! . ) ) c?usions and discuss future research directions.
pseudo-random pattern for sampling the image, in which arbi-

trary portions of the pattern contain roughly uniformly spaced

image pixels, with a density proportional to the length of the !l |MAGE CODING INTO MUTUALLY REFINABLE PACKETS
pattern; the other is based on a frequency domain watermarkingn this section, we consider the problem of encoding a still
technique [5]. Ng and Kdsevicpropose an aI_tgrnative solutio_nimage into two mutually refinable packets.

to the same problem, based on the use of critically sampled filter

banks [18]. Although our proplem and the problem qf digitak  notivation and Plan Outline

holography are conceptually similar, none of the solutions pro- . ) o .

posed thus far for this problem deal with the issueffitiency 1) Review of Single Description Coding of ImageEhere

of the representation: they all work on raw image data only, afti2 de-facto standard architecture for single description image

some do actually increase the number of bits in the represerftgding algorithms, consisting of first applying a linear decor-
tion. relating transform to the input image, then performing scalar

guantization of the transform coefficients, and finally per-

forming entropy coding of the quantized bins. In this standard

architecture, wavelets have been used as a linear decorrelating
The main contribution presented this work is the design a@nsform in order to attain some of the best known results in

optimization of new and high-performance wavelet-based M{arms of coding efficiency.

image coding algorithms with a number of remarkable featuressome of the most successful wavelet coders derive their high

as follows. coding performance from their ability to identify sets of coeffi-

« On standard test images, our coders typically attain equaénts with different statistics within image subbands, and then
PSNR values when compared to state-of-the-art M&bding each of these sets with respect to an appropriate sta-
coders, but using approx. only 50-60% of their requiretistical model [6], [15], [16], [22], [28], [26], [29], [36]. Since
bit rate. Even when compared against state-of-the-dinese sets typically are image dependent, this information is not
coders which araotrobust to errors, our coders performknown a priori, and therefore must be somehow conveyed to the
competitively too. And furthermore, these excellentiecoder. This can be done eitlaplicitly[15], [22], [28], [29],

C. Main Contributions and Paper Organization
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Fig. 1. Architecture of the multiple description transform coder.

[36] orimplicitly [16], [16], [26]. In the explicit case, “map” bits
describing these sets are included in the bit stream; these are bits.
that do not convey information about the value of subband coef-
ficients, but instead configure the decoder appropriately to de-
code such values. In the implicit case, the information regarding
sets of coefficients is deduced only from data causally available
at the decoder, so that no explicit map bits are required.

2) Issues in the Generation of Two DescriptionB per-
form MD coding of images, we use the standard MD transform
coding architecture proposed in [3], consisting of replacing the
single description quantizer with a MD quantizer, and then per-
forming entropy coding of the two output quantized streams in-
dependently. This architecture is illustrated in Fig. 1.

We decided to build our MD image coder based on this
architecture mainly because of two reasons. One is that for
coding Gaussian sources with memory using the MD transform
coder, the optimal transform to use for decorrelation is the
Karhunen-Loeve transform (KLT) [3]; in the case of single
descriptions, this is often the justification used for the de-facto
architecture, and for the use of decorrelating transforms
that approximate the KLT. More practically however, the
state-of-the-art on the design of single description coders based
on that architecture is very mature, leading one to be optimistic
about the performance attainable by extensions of these good
coders to the MD case.

The issue of extending good single description image codeys
to support multiple descriptions using MD scalar quantizers [3

" Scalar 1 ;
- '

Source : Quantizer :
Muttiple Description Scalar Quantizer

Fig. 2.

II

Basic architecture of a diversity system using a MD scalar quantizer.

Receiver 2

coders that explicitly transmit map data (such as [15], [22],
[28], [29], [36]).

To further complicate things however, not any backward
adaptive coder will perform well either. Some of these
good coders derive part of their gains not only from
their ability to adapt the entropy coder to local changes
of statistics in image subbands, but also from adapting
the quantizer applied to each coefficient. Now, in the
context of MD coding, whereas descriptions are encoded
independently of each other and must be decodable on
their own, the requirement that when both arrive at the
decoder they must be combined to produce a higher
quality approximation imposesynchronization con-
straints among descriptions. Therefore, if adaptation of
the MD quantizers is used, and a mismatch occurs in the
choice of quantizers (due to the independent adaptation
for each description), a decoding failure occurs when
both descriptions arrive, since the information they carry
is inconsistent; so, either no adaptation is used, or map
data has to be included in each description to maintain
synchronization, thus bringing us back to the problem
pointed out above. This is not the case when entropy
coders instead are adapted on a local basis, since in this
case all that changes is the length of the codewords used,
but not the encoded information itself.

Design of a Multiple Description Image Coder

is not altogether straightforward: not any good classical coderMD systems dealing with an arbitrary number of descriptions
will result in good performance under the MD constraints, jugtvolve a large number of parameters (rates for each descrip-
by inserting an index assignment and an extra entropy codefipn, and distortions for all subsets of descriptions), and there-

the loop.

* In the context of MD coding, it must be possible to decod¢
each description independently of whether other descng
tions are available at the decoder or not. As a result, if th
coding technique employed makes use of explicit map in-
formation, enough map bits must be spent within each de-
scription to ensure that each one of them can be decode
independently of the others. But map information is inhe{i-on_

ently different from basic data in that, in general, it does

not admit approximate representations. While it makes
perfect sense to talk about the accuracy to which a givgn
wavelet coefficient is described, what is meant by “an ap-
proximate representation of map information” that coul

be used to build multiple descriptions is, at least, both un-
clear and dependent on specific coding frameworks. Whgn
this information is replicated in both descriptions and both
arrive to the decoder, half of the map bits carry no infor-
mation. This argument suggests that backward adapti

fore both optimization and performance comparisons become
fairly involved. However, for two balanced descriptions, this is
ot the case: only one rate (the number of bits spent on each de-
cription) and two distortions (the distortion when either one of
the channels fail or when both work) needs be considered. Next,
we present the design of a high-performance MD coder that is
enable to performance analysis and optimization.

) Review of Multiple Description Scalar

Quantiza-

The first “practical® results on multiple descriptions

were presented by Vaishampayan, where a simple procedure is
lven to design MD scalar quantizers with some remarkable
asymptotic properties [32], [34]. Fig. 2 illustrates the role of a
D quantizer in a two-channel diversity system.

A MD quantizer consists of two main componentscalar
uantizer (that maps continuous-valued random variables to
oints in a countable set), and emlex assignmer{that splits

1practical in the sense that previous work had focused on the characteriza-
Mh of the MD rate/distortion region under different conditions, but not on the

coders (such as [6], [16], [26]) are to be preferred oveffective construction of good MD codes.
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(a) (b) Fig. 4. Inversion of single-channel quantizers. A quantization cell for the

single-channel quantizers consists of a (possibly disjoint) union of intervals,

Fig. 3. Two index assignments: (a) staggered quantization cells; (b) higﬁgpresenting cells from the scalar two-channel quantizer. To dequantize, we

spread cells. The idea is that bins of the scalar quantizer are placed in a maffpiect the midpoint of the most likely interval (i.e., the interval closest to the

and then quantizer indices corresponding to row and column entries are 4N
over each channel. If both descriptions are available, the original quantization
bin can be recovered; if not, the original quantization bin is known to be one of
those in the received row/column.

3) Encoding: At a high level, the MD image coding algo-
rithm works as follows. First, a given input image is decom-
posed into subbands, and then a uniform scalar quantizer (with

the information about each sample into two complementagypossibly wider zero bin) is applied to each of the subband co-

and possibly redundant descriptions of the same sample). éfficients, thus producing a quantized field. Two descriptions of
index assignment is an injectiah: N — N x N (N is the this field are then created, by mapping each quantized coeffi-
set of natural numbers). When the scalar quantizer maps #iént to a pair of numbers, using the index assignment compo-

source to a finite number of points (sa), the map!/ can be nent of a MD quantizer (as in Fig. 3).

thought of as a matrix of size x n, in which onlyn locations  The choice of index assignment is the mechanism by which

are occupied. Clearly, there exisiC(n?, n) = 0(n®") distinct  performance of the two-channel decoder is traded off for perfor-

such mappings. Two example index assignments are showryiBince of the single-channel decoder, by means of controlling

Fig. 3. the amount of redundancy in a MD code. Now, it is well known

The problem of designing good index assignments is thafat different subbands carry unequal weight in terms of overall
oughly studied in [32], using Ozarow’s characterization of theignal energy content: whereas the loss of the pure lowpass pro-

MD rate/distortion region for the Gaussian source as a guidifgttion is likely to render the entire reconstruction worthless, the

principle [10], [20]. Under the assumption of equal and higfpss of substantial portions of the high frequency subbands is

rates for both descriptions, and for a squared error distortigfuch less significant. Therefore, it seems intuitively clear that
measure, a construction of a large class of index assignmentghisre are gains to be had by allowing some degree of adapta-
presented in [32], for which the exponential rate of decay of th®n when choosing index assignments, instead of using a fixed

MSE is exactly that predicted by Ozarow’s result. one for all subbands. Our algorithm provides this by choosing

2) Reconstruction Levels of the Single-Channel QuaBne index assignment per subband, and explicitly encoding this
tizers: Image coders based on uniform quantizers typicalbhoice as map bits into both descriptions: since the cost of the
perform inverse quantization by mapping bins to the midpoiguantizer parameters are amortized over the entire subband, the
of their cell. However, taking the same approach for invertingenalty paid by doing so is more than compensated by the gains
single-channel quantizers leads to remarkably poor perfefue to adaptation. An experiment to quantify these gains is pre-
mance if its cells are large (i.e., in the low excess rate regimepnted in Section 1V.

To overcome this problem it is necessary to reconstruct notNext, subband descriptions are entropy coded, independently

to the midpoints of these cells, but to their centroids insteagk each other. The coefficients in each description are dequan-

However, in order to compute centroids, we need a model f@fed using the single channel decoder, and a local variance es-

the distribution of coefficients within each subband. timate is formed based on causally available data (this is so that

The statistical properties of subband data have been thgfe estimate depends only on data available to the decoder).
oughly studied before in the context of image coding, and diBased on comparing this estimate against a fixed threshold, each
ferent models have been proposed [15], [16], [24]. Howevercgefficient is classified into one of two possible classes; and
feature common to all these models is that subbands can beggh class is entropy coded separately, with respect to its own
sumed to be drawn from zero mean, unimodal, symmetric disrobability model. This classification step attempts to separate
tributions. For this class of distributions we design a simple ifegions of locally large and locally small variances, a basic prin-
verse quantization rule, whose operation is illustrated in Fig. diple used in most state-of-the-artimage coders. Table | presents

Using this rule for inverse quantization instead of thg pseudocode description of our proposed a|gorithm_

midpoint rule resulted in an increase of 6-7 dB for the 4) Decoding: In order to decode, two steps have to be per-

single-channel reconstructions in the low excess rate regif@@med. First, individual descriptions have to be entropy de-

(i.e., when single-channel cells are composed of the union o@ded. If either one of the descriptions is lost, then the avail-

large number of two-channel cells), and a loss of 0.4-0.5 dple description is dequantized using the single channel inverse

in the high excess rate regime. quantizer (actually, this already happened in the entropy de-

) . . . coding loop), and the wavelet is inverted, thus yielding the single

However, the sub-exponential terms in the MSE moethe same: the per-

formance of the MD scalar quantizer is bounded away from the Gaussian l\?ﬁbannel 'mag? eS_t'mate' Ifboth de.sc.nptlons arrive, then p”O_r to
rate/distortion bound, as one would intuitively expect. inverse quantization the two descriptions have to be recombined
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PSEUDOCODEDESCRIPTION FOR THEMD ENCODER

Output: two compressed bit streams.
Algorithm:

to each coefficient.

its subband-dependent index assignment.

3. For each description:

fixed threshold; O otherwise.
coder, to entropy code &;;.

new observed value ¢&;.

Input: image, scalar quantizer, array of index assignments (one per subband) .

1. Take a wavelet transform of the input image, and apply the input quantizer

2. Create two descriptions of each subband, by applying to each coefficient

For each quantized coefficient éi]— in each subband, start with two
uniform density estimates h(®) and A(Y, and then:

(a) Use the single-channel inverse quantizer to dequantize
coefficients within a causal neighborhood.

(b) Compute a binary context word w;;:
estimate (computed based on the dequantized data) exceeds a

(c) Use the demsity A(%#) as the probability table in an arithmetic

(d) Update the corresponding density estimate h{¥i), based on the

1 if a local variance

by inverting the index assignment. Pseudocode for this is shown
in Table I1.

C. Optimization of System Parameters

Next, we present an algorithm to find optimal parameters of
the proposed MD coding algorithm.

1) Motivation: Inthe single description case, available com-
munications resources typically place constraints on a single
variable affecting the quality of the reconstructed images: the
number of bits available to encode them. In the MD case such
a constraint is also meaningful: it is descriptions that actually
get transmitted over communication channels, and therefore the
number of bits used to encode each description cannot exceed
the capacity of these channels. However, in the MD case, there
is one extra independent variable that affects the quality of the
reconstructed images: channel failures.

To illustrate this point, consider a setup in which at least one
of the two channels is very likely to fail; in that case the re-
constructed image quality is, most of the time, that achievable
using only single-channel decoders. On the other hand, if chan-
nels fail rarely, then most of the time the reconstructed ima

TABLE I
PSEUDOCODEDESCRIPTION OFTWO-CHANNEL DECODER

Input: Two compressed bit streams.
Output: A reconstructed image.
Algorithm:

1. Entropy decode each description, to
obtain two quantized fields &) and
#? of subband coefficients.

2. Use the pair égl») and &2

¥ ,; tO Trecover
the central bin é;;, by inverting the
index assignment corresponding to that

subband.

3. Dequantize the field of ¢;;’s, using
the uniform scalar quantizer; then
apply the inverse wavelet transform,
to produce the output reconstructed
image.

quality achievable by the two-channel reconstructions. We

quality is equal to that achievable using the (better) two-chandg[Malize these concepts next. _ o
decoder. As a result, both the capacity of each chaangthe 2) Formulation: We formulate now a discrete optimization
frequency with which each of them fail affectimage quality, anBroblem, yielding optimal performance in the presence of appli-
hence must be taken into account when choosing what paré;ﬁtion-specified constraints. Consider the following definitions.

eters (i.e., what scalar quantizer and index assignments) to use
for coding a particular image.

In our formulation, for a fixed number of bits for each
description, we allow the user to specify a minimum quality
for the images reconstructed using single-channel decoders. Ife
the error rate of the channel is high, the user should request
high quality single-channel reconstructions, at the expense of

Let 6 denote an arbitrary scalar quantizer, and ldenote
an arbitrary index assignment.

Let f denote animage, afid,,, )m:1...as its decomposition
into A/ wavelet subbands.

Let Do(f, 6, Is) denote the mean squared error (MSE)
in the central reconstruction of using the given
central quantizers and the set of index assignments
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Is, s = (s;---sp); i.e., one index assignment per Subbands
image subbands{ > 2 is the number of diagonals in  _ 1 k- k M
the index assignment applied to thih subband). Let § ez @ * ¢ ¢ ¢
Di(f, 6, Is), D2(f, 6, Is) denote the single-channel § =3 L4 g g b
MSE's. % . .
* LetRi(f, 6, Is), Ra(f, 6, Is) denote the number of bits & d= s t° .w) R
required to encode each descriptionfofising the given § °
central quantizer and index assignments. E o
Then, our goal is to find a paii, Is) to solve: B aea,, L ® L4 °
Hlillpo(f, 8, Is) (1) Fig. 5. T_rellis for the dynamic progra\_mming S(_)Iution:_ in the horizon_tal
5, Ig axis, the different subbands are shown; in the vertical axis, the possible index

assignments for each subband are shown. The@kt i, j) of an arrow is

subject to the single-channel distortion that results from using an index assignment with
i diagonals on subbanil DP is used to find a path of minimum cost in this
trellis, corresponding to an optimal choice of index assignments.

R‘l(fv 67 IS) = R‘Q(f? 67 IS) S Rbudget (2)

Du(f, 6, 1s) = Do(f, 6, Is) < Diudger ®) (this problem will be a key element of the solution to the more

general problem, presented below).

Now, when the choice of each index assignminin the op-
timal vectorlg can be made independently of all other choices,
dynamic programming (DP) can find the optindglefficiently

ng]; this assumption clearly holds for our coder, since subbands
are encoded independently of each other. We solve this problem

develop an efficient algorithm to compute approximate .. . : o A
. . efficiently by searching for a minimum cost path satisfying the
solution of the problem defined by (1)—(3). We do not attem fven constraints, in the trellis shown in Fig. 5.

to find the optimal solution because, although we do not ha €Eurther reductions in complexity can be obtained by using

a proof yet, we conjecture that our problem is NP-Hard. |f . . ) . )
this were true it would imply that, with high likelihood, thek%gerraeggr']ae': gr[;y]b”d DP-Lagrangian methods, but are not con

most efficient algorithm to solve our problem would not be ) Computation of the Approximate Solutiohising the al-

;:J:Etar;ﬂalIyobse;tbelret?;;ej)? S;;;?‘E%Zﬂttsregeirggg ﬁﬁtcrgggﬁg rithm presented above, here we present an algorithm to find
(n™") P 9 ’ y arameters solving (1)—(3), when restricted to the class of band-

task. . . .
) . . idth-constrained matrices.
Define thespreadof an index assignment to be the number ova

. . L : The basic idea is to take advantage of the monotonicity of
diagonals occupied by the central bins in the matrix represenﬁ%—hR and D as a function of. We search for the smallest
tion; for example, the spread of the assignments in Fig. 3(a) a )

. . ; . g antizeré such that the rate constraif,uage; is met (with
(b) is 2 and 3, respectively. To derive an efficient algorithm, w uality), because this guarantees tBatwill be minimized,

][estncththe Cl.asé. of |3nd_ex a;sstlrg]]nmetntsf \t’)\’e goqzlttﬁl]er to 26 9f c%fceDo is independent of g. Then, for that particular value of
orm shown in Fig. 3, 1.€., 1o the set of bandwidih-constraineg, . verify the constraint o : if it is satisfied, we are done.

matrices. We are motivated to consider this particular subset be-

t hih rates. th forman f a2 MD lar i tif it is not, then the constraints are inconsistent: increasing
cause, at hign rates, the performance ot a scalar quantiggh, only result in larger values &f;, andé cannot be decreased
is entirely determined by the spread [32].

Anoth h dt - imati without violating the constraint oR. At each step, for each can-
__Another reason why we need o resort to-an approximatigiyaies considered, the best vector of index assignmépts)
is because, at practical middle/low bit rates, exact equality fI Mfound using the algorithm presented above. A pseudocode de-
R1, Re, and forDy, Ds, cannot be attained in general. Usin

the index assignments designed in [32], we have found the g#:_rlptlon of the proposed algorithm is presented in Table IIl.

ference in the length of the descriptions to be less than 0.1%
(e.g., two descriptions of length 16 380 and 16 341 bytes), and lll. | MAGE CODING INTO ANY NUMBER OF MUTUALLY
the difference in PSNR of each description to be less than 0.02 REFINABLE PACKETS

dB. Since we regard these .ap.proxmatmns to be good.e.no.ughm this section, we consider the problem of compressing an
we do not further pursue this issue. However, we feel it is in;

. . . image into not just two, buany number of mutually refinable
portant to emphasize that exact equality, as prescribed by the

o L : ckets. Our goal is to come up with an image representation
constraints in the optimization problem, cannot be achlevedﬁgsed on multiple packets, in a way such that approximations
general. '

. tati ¢ Optimal Index Assi Gonsid to the original image can be obtained frambitrary subsets of
. ) Compu ation ot Uptimal index Assignmenisonsider ackets, and such that the quality of the approximation depends
first the following simpler problem: for a given quantizer stepg

. . X . nly on the size of the subset it on which specific packets
sizes, find a vector of index assignmeni(6), such that are selected. This problem is a generalization of the classical

problem of multiple descriptions, to deal with more than two
descriptions.

where the user-specified parameters Bfgq..; (the available
bit rate to encode each description), dlgl.qee: (the maximum
distortion acceptable for single-channel reconstructions).
3) Approximation of the Optimal SolutionMotivated by
asymptotic properties of MD quantizers at high rates,

I3(6) = arg Ir}in Di(f, 6, Is)
s
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TABLE Il
PSEUDOCODEDESCRIPTION OF THEOPTIMIZATION PROCEDURE

Input: image, Riuge> Diuges an interval [00,61] known to contain 4*.
Output: optimal parameters ¢* and I7, if they exist.
Algorithm:

1. 6 = 8y; o := d1;
2. for n>2:
(a) 4, := %(6L+5H)-

(b) Compute I7(d,) = argming, Di(f,d,, Is).

(c) if %(Rl(f’énaIs*(én))+R2(f,6n’1:(6n))) < Rbudg.n then 07, := dy;
else, if 3(Ri(f,6n, I3(6n) + Ro(f, 00, I3(00))) > Runsges» then 8y := y;
else exit loop;

3. if %(Dl(f,én,ls*(én))+’DQ(f, Ons Is (6n))) < Dyuggwr» then return §* := 4§, and IF := IX(8,);
else the constraints cannot be satisfied.

A. Motivation and Plan Outline considering the quantizer whose set of Voronoi cells is obtained
1) Robust Transmission Over IP Networkele are moti- as the pairwise intersection of the cells of the two quantizers,

vated to consider this more general version of the problem S New quantizer is also good. A natural mechanism to extend
multiple descriptions essentially because of constraints impodBIf construction to generafé > 2 mutually refinable packets
by an application that is of great interest to us: robust transmi§-{0 designV good quantizers, in a way such that the quan-
sion of compressed data over IP networks. tizer that results f_rom |_ntersect|ng the_V(_)ron0| cells of d@ny

« Packets transmitted over IP networks are limited in SiZout of theV quantizers is also good. This is the approach taken

Fo exampe, over an eteret, he iz of th lrgd B¥0°T VYA Renoold 4} usno desn rera b
packet that can be transmitéeid 1500 bytes, and suppos 9 q b P bp '

. . e Bthat approach, each packet carries information about every
we encode an image into two descriptions of length 30 NN L
o s&ngle subband coefficient¥ descriptions are created by quan-
bytes each. Although applications are allowed to transn,HZin each coefficient with théV quantizers, and putting the
packets longer than the MTU limit, the transport and/or 9 q ' P 9

IP protocols will fragment a large packet into Sma”eguantuer outputs into each description.

ones, transmit all of these small packets separately, anchI D scalar quantizers have been found to perform extremely

reassemble them into a large packet at the receiving exvaall in the low bit rate regime, even when the high-rate assump-

. .._tJohs made in their design are clearly violated [27]. However, no
However, should a single small packet get lost, even if & :
: . such corroboration has been found yet when the number of de-
other small packets arrive these are discarded. To prevent. .. . .
scriptions is allowed to increase.

four descriptions o size 1500 y1es each, rahr than g DESIUN PNCIIeS: I the conditon tht each pacet car-
descriptions of size 3000 bytes each. ' ries mformat.lon about every smgle; coefficient is relaxed, it bg—
« IP networks do not support the notion of priority classeSOMes possible to expl_or_e interesting tradeoffs in the generation
" ; of more than two descriptions. To understand the nature of these
All packets of the same length aaepriori equally I|k_er trladeoﬁs, consider Fig. 6.
tp be dropped. Hence, a coder capable of proc_jucmg MU Erom the point of view of pure source coding, it is desirable
tiple packets of roughly equal length and equal |mportan?8 collect all coefficients within a Zerotree structure and encode
is better suited for this application than classical code{ﬁ . . L. . . ;
based on multiresolution principles emina sm.gle packet: high compression efﬁcu?ncy will be gt-
, i ' o . tained by doing so. However, if the packet carrying that partic-
2) Extensions to Multiple Packetsthere are significant dif- ,5r zerotree is lost, the damage to the signal will be severe:
ferences between the standard problem of multiple descriptiqfisserve in Fig. 6 how, since all the memory in the process is
(two packets), and the more general case we are interesteghify \,ith the erased packet, no form of signal processing can be
here (many packets). There are a number of possible approacliesieq 1o the reconstructed image to recover the missing eye.
to designing these more general coders, and in this work WRerefore, robustness requirements dictate that spatially clus-
focus on approaches based on MD quantization ideas. ereq coefficients be spread among multiple packets and that
~ The case of two descriptions based on MD scalar quantizgts, pe coded independently of each other. Hence, we see that
is e_ssentlally reduc_ed_ to two instances of the cIa_ssmz_;\I qua'?‘Hémory in the source can be used either to improve compres-
zation problem. This is so because a MD quantizer is essefp, efficiency, or to combat channel impairmentsiis is the

tially a pair of quantizers such that, individually, these are goQl ;ce of tradeoffs to explore when designing robust coders.
quantizers; but then they have the added constraint that when
4This is a manifestation of the tension between the goals of source and channel
3This is known as maximum transmission unit (MTU). coding.
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Fig. 6. To illustrate problems arising when attempting to spread subband coefficients across multiple packets; left: a typical Zerotreereiginisttivetion
that results from completely losing a Zerotree.

Based on these observations, these are the design princigles - £} (M is the number of subbands in the wavelet expan-

that we use in the construction of our robust coder: sion of the imagekF is the number of codes in the family). The

a) Decompose into spatio-temporal subbands using imterpretation of this functiop is that it specifies the number
classical transform: The idea in this case is to exploit the stanef lost packets required to completely erase all the information
dard energy-compaction gains attained by classical transforros,the description of a subband coefficient: this is how the UEP
by coding each subband separately. However, within subbangigperty above discussed is implemented.
an iid model is used so that the damage caused by a lost packétinally, once appropriate codes are applied to each descrip-
can be diffused over the entire image (rather than concentrattian of each subband, and given a target numbef indepen-
it in a localized spatial section). dent packets desired, the components of each codeword are en-

b) Implement a subband-dependent unequal error protettopy coded and placed into each of the packets. The operation
tion scheme:On average, significantly more damage will bef the proposed encoding algorithm is illustrated in Fig. 7.
caused to a signal by the complete erasure of a low-frequency) Decoding: The decoding steps are straightforward. First,
subband coefficient than by the loss of a high-frequency coefach of the received packets are entropy decoded. Then, for each
ficient. Therefore, it seems natural to design a coder in whislubband, if the number of packets received is enough to decode
the number of lost packets it takes to erase all the informatitiee coefficients of the description of that subband, the appro-
related to a coefficient be dependent on the importance of theate erasure-resilient code is applied, and the description is

subband to which that coefficient belongs. recovered; else the description is lost. Finally, an approxima-
tion to the original image is obtained by MD dequantizing each
B. Design of a Multiple Description Image Coder subband, and inverting the transform.

Next, we present the design of a high-performance algorithm3) Remar:<s: Iﬁxce{)t fozjmﬂor mOd'fécatg]t; the_ t;a_chmq;;e
to compress images into any number of mutually refinapl® ProPOse 1o allocate redundancy and cr scriptions ot
packets. a given image is essentially the same as the priority encoding
1) Encoding: Consider a family{C,,}”_, of good erasure- transmission scheme [1]. However, there is one factor which,
' nIn=1 %gt_hout further research, prevents us from using the more gen-
imum number of erasures that the code can tolerate and still é@I erasgre—re5|l|ent cod_es computed by PET s_ystems: itis the
1o that in our construction, we need to deal with the—some-

cover the message. The simplest example of such codes is 1e b t of having to ent de ch | cod
family of (n, 1, n) repetition codes, with trivial encoding andWO?dS zafre—concept ot having to entropy code channet code-

decoding algorithms, but with poor asymptotic erformanct’ . .
gag P ymp P In our experiments, we used a very simple form of MDS

With slightl lexity, i -dist bl ) "
1 SIGNLY more complexity, maximum-distance separan e des to add redundancy: the family @f, 1, n) repetition

(MDS) codes such as Reed—Solomon codes, or “almost” MIy8 ) )
gdes. For these codes, compression of the resulting channel

codes such as those of Alon and Luby provide more exampl& d ds i t difficult. b hat tatistical model
[2]. Using these codes, we define a mapping{1 --- M} — codewords is not difficult, because whatever statistical mode

' : was available to encode source outcomes can also be used to
encode the channel codewords (these are nothing but multiple

5Also known ag(1 + €)-MDS codes. identical copies of the original source outcomes). A very
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Packet n

(Packet 2}

(Packet 1]

Fig. 7. Robust compression of subband data. In a first step, a MD quantizer is applied to each subband coefficient, creating two descriptiogsaf the ori
value. Then, depending on the subband to which a coefficient belongs, an appropriate error correcting code is applied: in this example, noieddmithappl
highlighted high frequency subband, and a simplel(, 3) code is applied on each description of the highlighted low frequency subband. Then, the components
of each codeword are distributed among multiple arithmetic coders, one per packet to be transmitted.

interesting problem opened up by our work is the study of . test image: Lena (0.5bpp/channel)

dependencies between the statistical properties of source o ' ' ' ' '
outcomes and those of the codewords obtained using more &8 §.
general MDS oK1 + ¢)-MDS codes. sl

@
a
=

IV. EXPERIMETNAL RESULTS

two-channel)
@
0

In this section we report coding results. In our experiments,
we use the 10-18 Daubechies wavelet, and target coding rate w
. . . 7.8
in the range 0.25-1 bpp. Sample image reconstructions, matlat §
files used to generate the plots presented below, and C sourci® 7sr e s
code, can be found at http://lcavwww.epfl.ch/~servetto/. 74

)
T

121

A. MD Image Coding Performance

7

In a first experiment, we show performance results for our op-
timized MD coder. For comparison, we also present results for
the case Whel_ﬂ the S.ame index assignment is fIXQd for all SlFHRj 8. Subband adaptation of the index assignments. The dots marked
bands, thus eliminating the need to search for optimal combina= 2, 3, 5, 7 correspond to the single-channel/two-channel MSE tradeoff

tions. The Corresponding p|OtS are shown in Fig. 8 and Samﬁ@ieved by fixed, image-wide MD quantizers; all other dots correspond to the

. . . . performance achieved by different combinations of index assignments, one
Image reconstructions are shown in Fig. 9. er subband. In all cases, the central quantizer is adjusted so that the total rate
Observe how in Fig. 8 the convex hull corresponding to suleuld be 0.5 bpp/description (total 1 bpp).

band adaptation lies strictly below that of the fixed image-wide
choices. In the low excess-rate regime (high single-channel ditagle-channel decoded image thatis 7.08 dB worse (from 35.53
tortion and low two-channel distortion, the bottom part of thidB down to 28.45 dB). We see therefore that, for practical ap-
plot), an increase in PSNR of3 dB in the performance of plications, there is little gain to be had by using index assign-
the single-channel decoder occurs when index assignmentsrasnts other than the staggered case< 2). This is because
freely chosen for each subband. In the high excess-rate regiimegrder to be able to gain less than one dB in PSNR for the
the gap is negligible. two-channel decoder, the quality of the images obtained by the
It is also interesting to observe how, in this example, in ordeingle-channel decoder has to be reduced by 7-8 dB. Hence, the
to improve the quality of the two-channel decoder by 0.76 d&ptimization process is very useful to understand the limitations
(from 38.69 dB up to 39.45 dB) it is necessary to tolerate & our proposed coding framework, as a benchmarking tool, and

(d1+d2)/2 (MSE, single-channel)
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© | ” ()

Fig. 9. Sample image reconstructions, for Lena, at 0.5 bpp/channel. (a) Two-channel decoder, high redundancy (PSNR: 38.69 dB), (b) singeartemnel d
high redundancy (PSNR: 35.53 dB), (c) two-channel decoder, low redundancy (PSNR: 39.45 dB), and (d) single-channel decoder, low redundar@&¢#fPSNR: 2
dB).

is certainly a very interesting intellectual exercise. But in prac- We would like to point out that the comparison with the
tice, the extra complexity involved in choosing optimal codindPEG-type coder of [35] is not entirely fair, in that it is not
parameters is just not worth the marginal improvements in petear what part of the gains we present come from using a su-
ceptual image quality, especially in the high excess-rate reginperior single description wavelet-based coder (wavelets versus
JPEG) and what from a different technique for constructing
B. Comparison Against other Multiple Description Image  MD’s.6 However, we strongly suspect that the gains we obtain
Coders cannot be attributednly to the use of a better transform and
1) Two Descriptions:As a reference, we compare the perPetter post-transform _processing/modeling of transform data.
formance attained by our MD coder (first in its two-packet cor?erformance comparisons for the two-channel decoder are
figuration), against MD image coders of Wang, Orchard arf@'tainly not useful, since in this case all we are comparing is

Reipman [35], and of Sfi”iYaS{i” and Chellappa [31]. The '€-6However, we include the comparison anyway because this is one of the few
sulting PSNR’s are shown in Fig. 10. existing good MD image coders we know of.
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Rate/Distortion Performance (test image: L.ena). Rate/Distortion Performance (test image: Barbara)
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Fig. 10. PSNR values achieved by our coder and by the two reference coders (left: Lena, compared to [35]; right: Barbara, compared to [31]). &imilar PSN
values are obtained by our coder using about 50%-60% of the bit rate required by these other coders.
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Fig. 11. PSNR values achieved by our coder and by the two reference coders. Top: Lena coded at 1 bpp into 10 packets (0.1 bpp/packet), compared to [12];
bottom: Lena coded 0.5 bpp into 16 packets (1/32 bpp/packet), compared to [14]. In both comparisons, left plots show results for low-redurat@ryialloc

our coder, right plots for high-redundancy allocations. The system denoted “Benchmark” refers to an ideal, genie-aided encoder which kntrasgm@sion

which packets will be lost, and hence uses a single-description coder and reduces its transmission rate accordingly.

a standard JPEG coder against a good wavelet coder, and thieiré&k that these gains can be explained only in terms of a
the differences are known to be, on average, 2-2.5 dB in fal@CT-versus-Wavelet argument.

of wavelet coders, which our experiments verify. However, for 2) Many Descriptions:As another reference, we compare
the single-channel decoders, which is when the technique usieel performance attained by our MD coder (now in its many-
to generate MD’s comes into play, the gains we observe aregackets configuration), against MD image coders of Gejal
excess of 4 dB; no wavelet coder is known to have achievad [12] and of Jiang and Ortega [14]. The resulting PSNR’s are
such dramatic gains over a JPEG coder, and hence we do stoawn in Fig. 11.
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In this case we would like to point out that, using a simplbased on entirely different frameworks, are able to close this
form of the PET system (based on trivial repetition codes), ogap.
coder is able to attain a much wider range of tradeoffs betweerFurther work is required to complete the proof of the con-
redundancy allocations and robustness. For certain choicegeatured intractability result mentioned in Section 1I-C. If our
redundancy parameters (MD quantizer and channel codesctmjecture proves true, an approximation algorithm for gener-
combat erasures), we are able to attain very high performaratiang index assignments based on a source description, capable
when only a small number of packets is lost, at the expengkgeneralizing asymptotically optimal MD quantizers [32], [34]
of poor performance and rapid decay when the number of Idgand hopefully improving upon their performance at low rates)
packets increases. Alternatively, we can sacrifice some comwsuld be extremely useful.
pression performance when the number of lost packets is smallPerhaps the single most important problem yet to be resolved
and in return get a much slower decay as well as greatly fiathe context we setup in this work is that of redundancy alloca-
duced uncertainty in performance when the number of packétm (in theN > 2 case). Recall that we motivated the problem
increases. To the best of our knowledge, ours is the first systefrmore than two descriptions based on constraints imposed by

to provide such functionality. the application of transmission over IP networks (Section III).
In this scenario, the choice of priority functignspecifying
C. Remarks on Computational Complexity which codes are to be applied on which subbands is a major

Excluding the DP optimization step which, as argued abovf ctor determining the overall performance of such systems; and

is not critical from a practical point of view, the encoder/decodé at choice should depend on channel condltlons (h'gh losses
pair is of a remarkable low complexity for the performance [rore redundancy, etc). We are currently studying this problem.

delivers. To give a practical sense of this, running on an Ultra

Sparc 1 workstation with a 140 Mhz CPU, it takes 6.8 s to pro- ACKNOWLEDGMENT

duce a512x512 image having two descriptions each encoded The authors would like to thank T. Berger-Wolf, for many

at 0.5 bpp, and 4.8 s to produce the same image based Qisgful discussions on the structure and properties of index as-

single description. These times are all-inclusive: network 1/Qjgnments, W. Jiang for providing them a copy of his paper

and computation of the direct and inverse wavelet transforps) prior to its publication, and the anonymous reviewers, for

are included. And our implementationfar from optimized for  myltiple suggestions which resulted in a significantly improved

speed. manuscript.
Furthermore, after the wavelet calculation, all processing is

done in a single pass, and scanning each subband in raster order:

the flow of control does not depend on the particular data set

being coded, itis a simple raster-oriented algorithm, particularly[1] A Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Pri-
Il suited for i | tati DSP chip. And all st ority encoding transmission|EEE Trans. Inform. Theoryol. 42, pp.
well suited 1or impiementation on a chip. And all steps ex- 1737-1744, Nov. 1996.

cept the final entropy coding admit a parallel implementation: [2] N. Alon and M. Luby, “A linear time erasure-resilient code with nearly

this is of particular interest mainly for the wavelet transform, &Fz)‘\i/mfég%co"eryf'EEE Trans. Inform. Theoryol. 42, pp. 1732-1736,

which is by far the most cpu-intensive part of the encoder/de-[3; j_c. Batllo and V. A. Vaishampayan, “Asymptotic performance of mul-
coder, and one we have little control over in designing our algo- tiple description transform codedEEE Trans. Inform. Theoryol. 43,
rithms. pp. 703-707, Mar. 1997.
[4] T. Y. Berger-Wolf and E. M. Reingold, “Optimal index assignment
for multichannel communications,” ifProc. SIAM Symp. Discrete
Algorithms Baltimore, MD, 1999, (long version available from
V. CONCLUSIONS http://emr.cs.uiuc.edu/~reingold/algorithms.shtml).

In this work, we presented the design, implementation and[®] A.M.Brukstein, K. J. Holt, and A. N. Netravali, “Holographic represen-
tation ofimages,TEEE Trans. Image Processingpl. 7, pp. 1583-1597,

optimization of error resilient data compression algorithms. . 199s.
Unlike most of the recent developments in the field (based on[6] C. Chrysafis and A. Ortega, “Efficient context-based entropy coding for

DCT’s and subspace methods), our algorithms are based on lossy wavelet image compression,”Rioc. Data Compression Conf.
the use of wavelets, MD scalar quantizers, and erasure-resilie Snowbird, UT, 1997.
u wav ) quantuzers, u hent) p. chung and Y. Wang, “Multiple description image coding based on

codes. lapped orthogonal transforms,” Proc. IEEE Conf. Image Processing
Our coding results are a significant improvement over the _ Chicago, IL, 1998. . .
f-th tin the field: tchthe i éB] T. Cormen, C. Leiserson, and R. Rivedptroduction to Algo-
statg—o -the-artin the field: on average, we can match the image ™ (jinms  Cambridge, MA: MIT Press, 1990.
quality achieved by most other coders using about 50%—60% 0f9] W. Equitz and T. Cover, “Successive refinement of informatidBEE

their bit rate. And furthermore, we attain this using a remarkably _ Trans. Inform. Theoryol. 37, pp. 269-275, Mar. 1991. _
. . 6{10] A. A. El Gamal and T. Cover, “Achievable rates for multiple descrip-
simple coding structure, both conceptually as well as computa- tions,” IEEE Trans. Inform. Theogyol. IT-28, pp. 851-857, Nov. 1982.

tionally. However, we believe there is still room for improve- [11] V. K. Goyal and J. Kovéevig “Optimal multiple description transform
ment: when removing the MD constraints, as a single descrip- codinglof Gaussian vectors,” iaroc. IEEE Data Compression Conf.
tion i d der fall 0.8-0.9 dB bel th Snowbird, UT, 1998.
Ion Image coder, our coaer a S approx. U.o—-U. elow 2] V. K. Goyal, J. Kov&evic R. Arean, and M. Vetterli, “Multiple descrip-
performance of the best published coder we are aware of [15].  tion transform coding of images,” roc. IEEE Int. Conf. Image Prog.
As argued, the MD constraints impose restrictions on the set of  Chicago, IL, 1998. R o

| ilabl build d coder. Yet i . b HS] V. K. Goyal, J. Kov&evig and M. Vetterli, “Multiple description trans-
tools available to build a good coder. Yet it remains to be see form coding: Robustness to erasures using tight frame expansions,” in

whether “smarter” coders within our framework, or even coders  Proc. IEEE Int. Symp. Inform. Theqrg€ambridge, MA, 1998.
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