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ABSTRACT

We introduce 2 new modulation domain texture segmentation al-
gorithm. The approach begins by constructing a dominant com-
ponent AM-FM image model, where the dominant amplitude and
frequency modulations are used as segmentation features. Statis-
tical clustering is applied in this feature space to compute an ini-
tial segmentation which is then refined by morphological filtering
and connected components labeling. The algorithm, which con-
sistently delivers correct pixel classification rates exceeding 94%,
is only partially unsupervised at present since the desired number
of regions must be known a priori. Our future work is focused on
developing strategies to make the approach fully unsupervised.

1. INTRODUCTION

In this paper, we present a novel modulation domain feature-based
approach for segmenting textured images. Segmentation is a clas-
sical image processing problem that involves partitioning an image
into two or more disjoint regions that are each homogeneous with
respect to some specified properties. Often, the processing goal
is to obtain a segmentation that is consistent with human visual
perception. The segmentation problem is critical in a multitude
of diverse applications including target identification and tracking,
remote sensing, autonomous vehicle navigation, automated man-
ufacturing and inspection, robot control, and automated or com-
puter aided diagnostic medicine. Indeed, segmentation plays a
fundamental early processing role supporting object recognition
and identification in virtually all computer vision systems. More-
over, the general segmentation problem is notoriously difficult, as
evidenced by the vast body of technical literature that has been
devoted to it [1-3].

The new approach we present here begins by formulating a
multicomponent AM-FM model for the image and then extracting
estimates of the dominant amplitude and frequency modulations
at each pixel for use as features. A preliminary segmentation is
obtained by applying a statistical clustering algorithm in the mod-
ulation domain feature space, where we utilize two new objective
functions based on feature space entropy and average local feature
deviations. Cluster validation is performed using the squared-error
criterion and invariants of the within- and between-cluster scatter
matrices. The preliminary segmentation is then mapped back into
the pixel domain where it is refined by morphological filtering and
connected components labeling with minor region removal to ob-
tain the final segmentation.

While feature-based segmentation techniques have been inves-
tigated extensively in the literature, our approach is significant for
two reasons. First, we believe that this is the first case where an
image processing problem of substantial practical interest has been
formulated and solved directly in the modulation domain. Second,
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the quality of the results we obtain is competitive with the best re-
sults that have been reported in the literature to date. At present,
our algorithm is only partially unsupervised, because the number
of textured regions in an image must be known a priori. Our on-
going research is focused on using the modified Hubert index to
automatically determine the number of regions so that the algo-
rithm will be fully unsupervised [4].

2. IMAGE MODEL AND FEATURE SPACE

Our approach is based on the complex-valued multicomponent
AM-FM image model
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where ar(m,n) is the amplitude modulation of component k
and Vyi(m,n) = [U(m,n) V(m,n)]7, which contains the
samples of the corresponding continuous-domain phase gradi-
ent field, is the frequency modulation function of component k.
For a real-valued image s(m,n), the complex image t(m,n) =
s(m,n) + jg(m,n) is constructed by adding an imaginary part
equal to the (linear) directional multidimensional Hilbert trans-
form of s(m,n) [5,6). In this case t(m,n) admits several im-
portant properties analogous to those of the corresponding 1D an-
alytic signal; we call t(m,n) the analytic image associated with
s(m,n).

We analyze t(m,n) with a 42-channel multiband bank of
octave-band unity-aspect-ratio Gabor filters similar to the one de-
scribed in [7]. The purpose of this processing is to isolate the mul-
tiple image components in the model (1) from one another on a
local basis in both space and spatial frequency prior to perform-
ing demodulation. We assume that each image component may
generally lie within different filterbank channels at different pix-
els, but that each channel is dominated by only one component in
any 3 x 3-pixel neighborhood. We then estimate the modulating
functions of all components by applying the approximate discrete
demodulation algorithm [8]
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to every filterbank channel response at all pixels.

For segmentation features, we use the estimated modula-
tions (2)-(6) corresponding to the image component that locally
dominates the image spectrum at each pixel. Let y;(m, n) be the
response of channel ¢ and G;(U, V') be the channel frequency re-
sponse. The dominant component at pixel (m,n) is the one that
maximizes the channel selection criterion [8] '
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Modulation domain texture features A(m,n) = a(m,n),

R(m,n) = [U%@m,n) + V*(m,n)]? and 6(m,n)
arctan[V (m,n)/U(m,n)] are selected from the channel that

maximizes (7) on a pixel-by-pixel basis.

3. STATISTICAL CLUSTERING

To obtain a preliminary image segmentation, we apply the well-
known k-means clustering algorithm [9] in the A-R-6 feature
space. While we are currently developing a technique based on the
modified Hubert index [4] for automatically determining the num-
ber of clusters, our algorithm presently requires a priori knowl-
edge of k,

Prior to clustering, we scale each feature by the reciprocal of
the sample standard deviation computed for the feature to obtain
the scaled features A, R, and 8. This scaling ensures that a fea-
ture with relatively large numerical values will not be permitted
to dominate the clustering algorithm. The similarity measure be-
tween pixels (4, 7) and (m, n) is then given by
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where the weights o, 3, and -y, which seek to empbhasize the feature
that provides the best class separability, are chosen by one of two
methods as described in the following two sections.

3.1. Entropy-based similarity measure

Intuitively, we expect that a feature with a flat histogram supplies
relatively little class separability information, whereas one with a
histogram that is tightly concentrated about several distinct modes
is powerful in its ability to discriminate between textures. This
admittedly imprecise notion suggests that the weights a, 3, and ~y
in (8) should be chosen based on modulation domain entropy: a
feature with a histogram that is relatively more localized will have
lower entropy and should therefore be assigned a larger weight
since it is expected to provide a relatively greater amount of class
separability information. When this line of reasoning is applied to
calculate the weights, we refer to (8) as the entropy-based similar-
ity measure.
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Let p ; (g) be the normalized histogram of A(m,n) and define
P (q) and ps(g) similarly. As usual, the entropy of each feature is
defined by, e.g.,

Ez=-Y p;i(9)log,p4(a) ()
q
The weight « is then calculated according to
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In (11), note that the modulation domain entropy E; is di-
vided by the range of the normalized histogram, a quantity that
tends to grow inversely with entropy. While it is true that lower en-
tropy generally implies increased class discrimination power in a
feature, it is also true that a feature exhibiting a perfectly unimodal
histogram will have the lowest possible entropy and yet provide
no class separability information whatsoever. The numerator and
denominator of (11) carefully balance these considerations. The
value assigned to the weight a in (10) is inversely proportional to
the fraction of the total feature space entropy £ that is contributed
by the feature A. Calculations completely analogous to those just
described are used to calculate the weights 3 and + for the normal-
ized features R and 6.

3.2. Local feature deviations-based similarity measure

A deficiency of the entropy-based similarity measure is that the
normalized histogram entropy indicates only localization of the
feature histogram and does not consider spatial relationships be-
tween pixels in the image. In this section we describe a second
method for calculating the weights in (8) that does not suffer from
this deficiency. When this method is used we refer to (8) as the
local feature deviations-based similarity measure. It is based on
the idea that we seek to segment the image into texturally homo-
geneous disjoint regions that are substantially different from one
another. Thus, for a feature that provides good class separabil-
ity information, the local deviations of the feature should be small
within regions. Moreover, since the number of pixels that lie on
boundaries between regions is small compared to the number that
lie in the interior of the regions, the average of the local deviations
computed across the image should also be small.

With K = N — 1, we define the average local deviation of the
N x N feature image A(m, n) by
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The weight « in (8) is then given by
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where Orom = D(A) + D(E) + D() is the total feature space
deviation. The weights 3 and -y in (8) are calculated in an entirely
analogous fashion.

3.3. Clustering algorithm

The k-means algorithm is run with respect to the similarity mea-
sure (8) for ten iterations starting from random initial cluster seeds.
In cases where the entropy-based method is used for determin-
ing the weights a, 3, and +, cluster validation is performed with
respect to the usual squared-error criterion [9].When the method
based on feature deviations is used, the invariant trSy;! Sg is used
for cluster validation, where Sw and Sp are the within- and
between-cluster scatter matrices, respectively. In either case, the
final clustering that optimizes the validation criterion is retained
for the preliminary segmentation.

4. POST PROCESSING

The preliminary segmentation delivered by the k-means algorithm
is generally unsatisfying and is rarely in good agreement with vi-
sual perception. Many small regions of misclassified pixels are
typically present and we have also observed long, narrow “streaks”
of misclassified pixels. In addition, numerous irregularities fre-
quently appear along the boundaries of regions that were smooth
in the original image. To ameliorate these effects and arrive at
the final segmentation, we apply two pixel domain post process-
ing operations to the image of region labels obtained from cluster-
ing. First, an isotropic morphological majority filter is applied to
smooth the region boundaries. For images of size 256 x 256, we
use a 9 x 9 filter kernel. Second, connected components labeling
and minor region removal are applied; only the k largest connected
components are retained, where k is equal to the number of clus-
ters delivered by the k-means algorithm. This final step enforces a
spatial correspondence constraint on the final segmentation in the
image domain.

5. EXAMPLES

Eight segmentation examples using the technique described in this
paper are presented in Fig. 1. The original images shown in
Fig. 1(a), (&), (g), (j), (1), and (n) are juxtapositions of Brodatz-like
textures, whereas the natural scenes in Fig. 1(q) and (s) are from
the MIT VisTex database. The images in Fig. 1(a), (e), and (g) each
contain two textured regions. Those in Fig. 1(j) and (1) contain
three textured regions, while the image in Fig. 1(n) contains four
textures. Our perception suggests that the images in Fig. 1(q) and
(s) each contain two primary textured regions, and this value was
supplied to the k-means algorithm. The feature deviation-based
similarity measure was used for all images except the two natural
scenes, which utilized the entropy-based measure.

Preliminary segmentations obtained using the k-means clus-
tering algorithm alone are given in Fig. 1(h) and (o). Fig. 1(d), (f),
(i), k), (m), and (p) show final segmentations obtained after post
processing. In all cases, the percentage of pixels correctly clas-
sified exceeds 94%. In Fig. 1(r) and (t), the final segmentations
are shown overlayed on the original images. Ground truth was not
available for these images. '

In selecting these examples, we have endeavored to choose
some for which the algorithm performed very well and some that
are more interesting because they are either extremely difficult or
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contain region boundaries that seem visually ambiguous to us. For
example, the region boundary near the center of the right edge of
the image in Fig. 1(1) is quite difficult to detect, as is the lower
right portion of the boundary between the two regions in Fig. 1(e).

6. CONCLUSION

AM-FM image modeling is an important emerging area and the
texture segmentation technique presented in this paper is signif-
icant because it represents the first time that an image process-
ing problem of substantial practical interest has been formulated
and solved directly in the modulation domain. In view of the fact
that many modern descriptions of texture are formulated in terms
of nonstationary amplitude modulations (local contrast) and fre-
quency modulations (local orientation and granularity), it is not
entirely unexpected that the results shown in Fig. 1 are of such
high quality. For a suite of 30 test images not unlike those de-
picted in Fig. 1 we obtained correct pixel classification rates rang-
ing from 99.53% to 94.18% using both the entropy-based and fea-
ture deviations-based similarity measures, which is competitive
with the best reported techniques. While we have observed that the
feature deviations-based measure often works best for synthetic
images and the entropy-based measure often works best for natu-
ral images, we have not developed a characterization that would
enable us to predict their relative performance a priori. Our future
work in this area is focused on the development of improved sim-
ilarity measures and cluster validation criteria that will enable the
algorithm to run in a fully unsupervised mode.
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Fig. 1. Examples. (a) Mica-Burlap image. (b) Computed dominant AM function. (c) Computed dominant FM function; 8(m,n) is
given by needle orientation and needle length is inversely proportional to R(m,n). (d) Final segmentation delivered by the proposed
algorithm. The correct classification rate is 99.53%. () Grass-Flowers image. (f) Final segmentation; correct classification rate is 97.43%.
(g) Burlap-Pigskin image. (h) Preliminary segmentation delivered by the k-means algorithm. (i) Final segmentation; correct classification
rate is 99.02%. (j) Flowers-Wood-Cork image. (k) Final segmentation; correct classification rate is 94.53%. (1) Burlap-Cork-Fieldstone
image. (m) Final segmentation; correct classification rate is 96.84%. (n) Four-texture example. (o) Preliminary segmentation delivered
by the k-means algorithm. (p) Final segmentation; correct classification rate is 97.33%. (q) Building.0010 image. (r) Overlay of final
segmentation on original image. Pixel values in the left-hand region are unaltered from the original; pixel values in the right-hand region
are divided by two. (s) GrassPlantsSky.0005 image. (t) Overlay of final segmentation on original image. Pixel values in the lower region
are equal to those in the original; pixel values in the upper region are divided by two.
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