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ABSTRACT

We present procedures and experimental results in con-
structing belief networks for image classi�cation systems
based on probabilistic reasoning. In particular, we compare
the performance of systems based on manually constructed
and automatically constructed belief networks. The sys-
tems exploit existing image descriptions and also exploit
interactions between multiple classi�ers to improve classi�-
cation performance. Performance evaluation results for the
consumer photograph domain are presented.

1. INTRODUCTION

Digital visual information has become pervasive in personal
computers, and it has become increasingly important to de-
velop tools and techniques to improve the accessibility of
visual information with speci�c content in personal com-
puters.

Based on our experience in a previous Web based image
retrieval system, WebSEEk, we found that subject hierar-
chy browsing was a popular user operation in interactive
image retrieval [3]. Users usually �rst browsed through a
subject hierarchy to get general ideas about the collection
and then issued speci�c queries using keywords. Image clas-
si�ers can be used to automatically map images to speci�c
classes to facilitate browsing.

Image classi�ers can also be naturally extended for the
automatic classi�cation of videos since image classi�ers can
be used to classify the key frames of a video, which can be
extracted using automatic scene change detection systems.

In [2], we presented the case for image classi�cation
systems based on probabilistic reasoning (ICPR systems),
which was developed to satisfy two related objectives, as
follows:

� First objective: exploit interactions between di�erent
classi�ers to improve classi�cation performance. This ob-
jective was motivated by the fact that a variety of image
classi�ers have been developed for consumer photographs
[9, 1, 7, 5]. Examples of image classes are as follows: in-
door, outdoor, sky, vegetation, city, nature, green vegeta-
tion, forest, mountain, sunset. These user-friendly classes
can be e�ective for browsing consumer photographs [5].

� Second objective: exploit existing descriptions associ-
ated with an image to improve classi�cation performance.
This objective was motivated by the fact that consumer
photographs and videos often have associated annotations.

Annotations may be speci�ed directly by users or derived
indirectly from speech or text associated with the visual
information.

The core of ICPR systems are belief networks for proba-
bilistic reasoning. In [2], we presented experimental results
for ICPR systems based on belief networks that were con-
structed automatically by using systems for belief network
learning. In this paper, we present experimental results
in manually constructing the topology of belief networks,
which is necessary in a variety of scenarios, as described in
section 4.

The paper is structured as follows. In section 2 we for-
mulate the objectives described above. In section 3, we
introduce a probabilistic reasoning system based on belief
networks, which lies at the core of ICPR systems. In sec-
tion 4, we present the steps to build ICPR systems. We
present a case study of building an ICPR system for the
domain of consumer photographs. Performance evaluation
results for ICPR systems based on belief networks that are
constructed both automatically and manually are reported
in section 5.

2. PROBLEM FORMULATION

In this section we formulate the objectives presented in sec-
tion 1. For a given domain, we de�ne a set of N random
variables X1 ... XN to represent the set of classi�cation
problems of the domain. A random variable Xi represents
a classi�cation problem, and can take one out of a set of
discrete values, which correspond to a set of classes.

For a given domain, we de�ne a set of M random vari-
ables Y1 ... YM to represent the set of classi�ers of the
domain. A random variable Yi takes one out of a set of dis-
crete values, which depends on the output of the classi�er.

Consider now the classi�cation problem represented by
the random variable Xi. Let us de�ne Xi to take a value
from a set of K classes fc1; :::; cKg. The objectives de-
scribed in section 1 can be concisely formulated as the com-
putation of the maximum a posteriori classi�cation, cMAP ,
as follows:

cMAP = argmax P (Xi = c j Evidence)
c 2 fc1; � � � ; cKg

(1)

Evidence � fX1; � � � ;XN ; Y1; � � � ; YMg (2)



Notice that the set of evidence variables can be any set
of all the random variables in the domain. This includes the
set of random variables representing the classi�ers and those
representing the classi�cation problems. Knowing the exact
values of random variables that correspond to classi�cation
problems corresponds to exploiting existing description for
classi�cation. Knowing the exact values of random vari-
ables that correspond to multiple classi�ers corresponds to
exploiting multiple classi�ers for classi�cation. Examples
are provided in section 5.

3. PROBABILISTIC REASONING SYSTEMS

Probability theory shows us that the joint probability dis-
tribution of a given domain can be used to answer any query
about a domain. However, the joint probability distribution
can become intractably large as the number of random vari-
ables in the domain grows. Consider the case where there
are n boolean random variables in a domain. The joint re-
quires 2n atomic probability speci�cations. For just n = 20
random variables, we need more than one million atomic
probabilities to be speci�ed.

To deal with this problem, we can use a data structure
called a belief network to give a concise speci�cation of the
joint probability distribution for a set of random variables
of a given domain [4]. Belief networks simplify the com-
putation of query results and greatly reduce the number of
conditional probabilities that need to be speci�ed.

3.1. Semantics of belief networks

The joint probability distribution of a given domain can be
used to answer any question about a domain. A generic en-
try in the joint is the probability of a conjunction of partic-
ular assignments to each random variable, such as P (X1 =
x1 ^ � � � ^Xn = xn). We use the notation P (x1; � � � ; xn) as
an abbreviation for this. By using probability theory, we
can rewrite the joint in terms of the following product [4]:

P (x1; � � � ; xn) =

nY

i=1

P (xi j xi�1; � � � ; x1) (3)

For all the random variables of a given domain, consider
structuring the random variables in a network in which
each node of the network represents a random variable,
and directed links connect pairs of nodes. If there is a
directed link from node X to node Y , then we say that
X is the parent of Y . Let us make the requirement that
Parents(Xi) � fxi�1; � � � ; x1g. This condition is easily sat-
is�ed by labeling the nodes of the network in any order that
is consistent with the partial order implicit in the network
structure. For this network, let us assume that all the nodes
in the network have been structured such that:

P (Xi j Xi�1; � � � ;X1) = P (Xi j Parents(Xi)) (4)

In other words, Xi is conditionally independent of its
predecessor nodes, given the parents. For a network that
meets these requirements, which we call a belief network,
we have the following:

P (x1; � � � ; xn) =

nY

i=1

P (xi j Parents(Xi)) (5)

Therefore, for a belief network, each entry in the joint is
represented by the product of the appropriate elements of
the conditional probability tables (CPTs) in the belief net-
work. The CPTs provide a decomposed representation of
the joint. For a belief network that is properly constructed
for a domain, equation 5 provides a complete and concise
description of the domain. Section 4 describes how belief
networks can be constructed for a domain.

3.2. Inference in belief networks

Once a belief network has been constructed for a domain, in
can be used as the basis for a probabilistic reasoning system
that computes the posterior probability distribution for a
query variable, given exact values for some evidence vari-
ables. That is, the system computes P (Query j Evidence).
Belief networks are 
exible enough so that any node can
serve as either a query or an evidence variable. E�cient
inference mechanisms for answering queries given a belief
network rely on applying Bayes' rule, standard methods for
manipulating probability expressions, and the conditional
independence relationships that are inherent in the network
structure. These algorithms are discussed in detail in [4].

4. IMAGE CLASSIFICATION SYSTEMS

BASED ON PROBABILISTIC REASONING

The steps to build an ICPR system for a given domain are
outlined below. The system is based on the probabilistic
reasoning system presented in section 3.

� First step: decide on the classi�cation problems that
are useful and interesting for the domain.

� Second step: de�ne a set of random variables to rep-
resent the set of classi�cation problems and the set of clas-
si�ers.

� Third step: construct a belief network for the domain.
A belief network learning system can be used to auto-

matically construct the topology and learn the CPTs of a
belief network, based on a set of training examples, as dis-
cussed in [2]. A training example consists of the values of
the random variables de�ned in the previous step.

In developing ICPR systems, it may be necessary to
manually construct all or part of the topology of a belief
network for a domain. This is the case when it is not pos-
sible to have access to a large set of training examples with
all the values of the random variables speci�ed.

In a domain in which there are relatively few image clas-
si�cation problems, the following heuristic procedure can be
used to manually construct the topology of a belief network
for ICPR systems.

� First step: for a set of random variables representing
the classi�cation problems of a domain, list all the possible
ways to order the random variables.

� Second step: incrementally construct a belief network
for each ordering of random variables, by inserting nodes
into the network according to the ordering. Specify the
parents of each node such that equation 4 holds.



No. Classi�cation Classi�ers Descriptions
problem

1 indoor- indoor-outdoor, none
outdoor sky, vegetation

2 sky-no sky indoor-outdoor, none
sky, vegetation

3 vegetation- indoor-outdoor, none
no vegetation sky, vegetation

4 indoor- indoor-outdoor sky-no sky
outdoor

5 sky-no sky sky indoor-
outdoor

6 vegetation- vegetation indoor-
no vegetation outdoor

Table 1: Scenarios for performance evaluation

� Third step: eliminate the belief networks for which
any of the required CPTs cannot be speci�ed either subjec-
tively or from a database of training examples.

� Fourth step: select the belief network that minimizes
the number of links. Minimizing the number of links mini-
mizes the number of CPTs that need to be speci�ed.

� Fifth step: add the nodes representing the classi�ers.
A node representing a classi�er is always a child of the node
representing the corresponding classi�cation problem. The
node representing a classi�er is not used as a parent node
of any other random variables.

5. PERFORMANCE EVALUATION

In this section we present performance evaluation results for
ICPR systems that were built for the consumer photograph
domain. ICPR systems were built to integrate the follow-
ing classi�cation problems and their associated classi�ers:
indoor-outdoor, sky-no sky, green vegetation-no green veg-
etation. These user-friendly classes are intuitive and can be
highly e�ective for browsing consumer photographs [5].

The classi�ers built for each of these classi�cation prob-
lems was based on a block matching approach �rst proposed
in [9, 7]. In our experiments, we used a system for belief net-
work learning and inferencing from the Knowledge Media
Institute [10]. The experiments used a database of 1,708
consumer photographs, courtesy of Kodak. Examples of
these images are shown in [8].

The experiments compare the performance of the indi-
vidual classi�ers with the ICPR systems, for the scenarios
described in Table 1. These only represent a subset of all
the possible scenarios the system can accomodate. Scenar-
ios 1 through 3 are examples of using multiple classi�ers for
a given image classi�cation problem. For example, scenario
1 classi�es images as indoor or outdoor, given the outputs
of the indoor-outdoor, sky, and green vegetation classi�ers.
Scenarios 4 through 6 are examples of using existing de-
scriptions for image classi�cation. For example, scenario 4
classi�es images as indoor or outdoor, given the output of
the indoor-outdoor classi�er and an indoor-outdoor label.
The evaluation procedure consists of the following steps:

� The set of all images in the database were divided into
two sets, seta and setb.

� The images in setb were used as the training set for the
block matching classi�ers. The block matching classi�ers
were used to classify the images in seta. This is repeated
by using seta as the training set and setb as the testing set.
At the end of this step, all the image in the database have
been classi�ed by the block matching classi�ers.

� The manual labels and outputs of the block matching
classi�ers for images in setb were used as the training set
to generate belief network bnb. Belief network bnb is then
used to classify the images in seta.

� The manual labels and outputs of the block matching
classi�ers for images in seta were used as the training set to
generate belief network bna. Belief network bnb was used
to classify the images in setb.

For each scenario, we compared the block matching clas-
si�ers with the ICPR systems. We also compared the ICPR
systems based on automatically constructed belief networks
with ICPR systems based on manually constructed belief
networks. McNemar's test was used to determine the sta-
tistical signi�cance of the di�erences in classi�cation per-
formance [6].

To apply McNemar's test, we divide an available data
set S into a training set R and a test set T . We use the
training set R to learn two classi�ers, CA and CB (note that
for manually constructed belief networks, training data is
still required to learn the CPTs). These classi�ers are used
to classify the test set T , and the following are computed:

� n00: number of examples misclassi�ed by both CA
and CB .

� n01: number of examples misclassi�ed by CA but not
by CB .

� n10: number of examples misclassi�ed by CB but not
by CA.

� n11: number of examples misclassi�ed by neither CA
nor by CB .

The null hypothesis to be tested is that the two learned
classi�ers have the same error rate, which means that n01 =
n10. McNemar's test is based on a �2 test for goodness-of-
�t that compares the distribution of counts expected under
the null hypothesis to the observed counts.

(j n01 � n10 j �1)
2

n01 + n10
(6)

The distribution of the statistics in equation 6 is ap-
proximated as a continuous �2 distribution. The constant
1 in the numerator is used to compensate for the fact that
n01 and n10 are discrete values. Note that the larger the
test size, the smaller the continuous-discrete approximation
error.

If the null hypothesis is correct, then the probability
that this quantity is greater than �2

1;0:95 = 3:841459 is less
than 0.05. So we may reject the null hypothesis in favor
of the hypothesis that the two algorithms have di�erent
performance when trained on the particular training set R.
The assumptions and details of the test are described in
detail in [6].

5.1. Results

Table 2 summarizes the results. The belief network topolo-
gies that were manually constructed and automatically learned



No. Belief ICPR system Improvement
network accuracy
topology

1 Automatic 86.24% +0.70%
Manual 86.48% +0.94%

2 Automatic 79.33% -0.23%
Manual 80.56% +1.00%

3 Automatic 77.22% -0.29%
Manual 78.22% +0.74%

4 Automatic 88.64% +3.10% *
Manual 88.89% +3.34% *

5 Automatic 82.32% +2.75% *
Manual 85.30% +5.74% *

6 Automatic 83.78% +6.26% *
Manual 83.55% +6.03% *

Table 2: Results for performance evaluation (* denotes sta-
tistical signi�cance)

can be viewed in [8]. For each scenario, the improvement in
performance refers to the improvement of using the ICPR
system compared to the individual block matching classi-
�ers. Results are reported for ICPR systems based on belief
networks that are constructed both manually and automat-
ically. For manual construction of belief networks, we used
the procedure described in section 4.

The ICPR systems led to statistically signi�cant im-
provements over the block matching classi�ers for the sce-
narios in which existing descriptions were used for classi�-
cation. ICPR systems based on manually constructed be-
lief networks only had statistically signi�cant improvements
over those based on automatically constructed belief net-
works for scenarios 2 and 5. Note that table 2 only reports
the results of McNemar's test for comparing ICPR systems
and block matching classi�ers.

6. CONCLUSIONS AND FUTURE WORK

We presented experimental results in constructing belief
networks for image classi�cation systems based on prob-
abilistic reasoning (ICPR systems). In particular, we com-
pared the performance of ICPR systems based on manually
constructed and automatically constructed belief networks.

On the one hand, ICPR systems are designed on a prin-
ciple of separation, in which we use individual image clas-
si�ers that have been optimized for di�erent image classi-
�caiton problems. One the other hand, ICPR systems are
designed on a principle of integration, in which we use prob-
abilistic inference to integrate multiple image classi�ers and
image classi�cation problems.

In the future we plan on extending the system for the
classi�cation of consumer photographs by incorporating more
classi�ers into the system. We also plan on building ICPR
systems for the news photograph domain. For this system,
we plan on incorporating classi�ers based on both textual
and visual information [1], since news photographs have ac-
companying captions and articles.
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