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ABSTRACT 

This paper addresses the application of active contours or 
snakes for robust tracking of contours. Conventional snake 
approaches to tracking initialize the current frame snake 
with the snake obtained in the previous frame and then 
optimize this result considering only the current frame 
information. In our approach motion estimation is 
embedded in the energy minimization process of the 
snake. This is possible using a dynamic programming 
approach for this minimization and introducing a new term 
in the energy of the snake. In this way, larger 
displacements of the contour are allowed, and the tracking 
is more robust. This technique has been applied for 
tracking facial features such as the contour of the face, the 
mouth, the nostrils and the eyebrows. 

1. INTRODUCTION 

Tracking of contours has many applications such as human 
motion modeling, biomedical image analysis, surveillance 
or autonomous vehicle navigation. Great attention in the 
past years has been devoted to contour tracking by means 
of snake models. Snakes were first introduced by Kass et 
al. [6]. They proposed energy minimization as a 
framework where low-level information (such as image 
gradient or image intensity) can be combined with higher- 
level information (such as shape, continuity of the contour 
or user interactivity). In their original work the energy 
minimization problem was solved using a variational 
technique. In [l] Amini et al. proposed Dynamic 
Programming (DP) as a different solution to the 
minimization problem in order to overcome issues like 
optimality, numerical stability due to the usage of high 
order derivatives of the discrete data, convergence and 
enforcement of hard constraints. Other approaches to the 
minimization through DP are found in [4] and [5]. 

These approaches have been applied to the problem of 
contour tracking. In the original work by Kass et al. [6], 
active snakes were already used to track contours through 
image sequences. The initialization problem was solved by 

using as initial position for the current frame, the optimal 
snake position found in the preceding frame. The same 
approach is followed in [7]. In both works it is claimed 
that the contour can be tracked along the sequence if there 
are no large deformations of this contour and if the frame 
rate is high enough. In [4] a similar approach was 
employed for tracking within the DP implementation. 

Another method was proposed in [3]. In this case two 
new terms were introduced in the Energy functional to 
account for inter-frame constraints, one for the internal 
forces and one for the external ones. The first one 
introduced continuity of the snake in the time dimension 
while the second one tried to maintain unchanged the 
intensity value of every snaxel. The minimization was 
done with a multiscale DP algorithm. The fact of making it 
multiscale means that the solution is reached faster, 
although the optimum might not be reached. Besides, the 
intensity value of the particular snaxels does not preserve 
enough information to track a specific contour. Moreover, 
the time continuity restriction is not compatible with large 
deformation of the contours. Other modifications that 
adapt the basic algorithm to the tracking of contours can 
be found in [2] and [9]. 

All the previous approaches fail when the motion 
between frames is large or when there are deformations of 
the contour which lead the minimization algorithm 
towards other local minima. The method we propose tries 
to solve these problems by using a motion estimation 
procedure which results are introduced in the search for 
the minimum of the energy. For this aim, a DP approach 
similar to the one presented in [4] and [5]  is used. 
However, only those pixels in the current frame that 
correspond to feasible displacements of snaxels in the 
previous frame are considered as snaxels candidates in the 
Dynamic Programming algorithm. Besides, a new energy 
term in the minimization procedure is introduced, based on 
the Motion Compensation error. 

Section 2 covers the basic concepts of the snakes that 
will be used in our approach. Section 3 describes the 
implementation of the snakes by DP. In Section 4 we will 
describe how we introduce the motion estimation into the 
snakes algorithm. In Section 5 we will apply this algorithm 
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to the tracking of facial features. Finally, Section 6 will 
outline the advantages of this method. 

2. SNAKES 

In the discrete formulation of active contour models the 
contour to be tracked is represented as a set of snaxels 
v,=(x,,yJ for i=O,. . . ,N-1, where x, and y, are the x and y 
coordinates of the snaxel i, and its energy, which is going 
to be minimized, is defined by: 

N-I 

Esnoke (v)  = C ( ~ i m  (vt ) + Eeu (vi )) 

Eint = Ivss (s)) 1 ~ 1 - 1 -  *vi + vi+, 1 (2) 

( 1 )  
I* 

We use a discrete approximation of the second 
derivative to compute E,,,,. 

This is an approximation to the curvature of the contour 
at snaxel i, if the snaxels are equidistant. We will force the 
snaxels to be equidistant when the snaxel is initialized in 
the first image. 

Minimizing this energy will produce smooth curves. 
This is only appropriate for snaxels that are not corners of 
the contour. In the case of corners the energy has to be low 
when this second derivative is high. We use: 

E;nt(y)=bly, -% + ~ , + l l  +(~-AXB-/Y-I -3 +y+~)l (3) 
where PI is set to 1 if v, is not a corner point and to 0 if 

it is. B represents the maximum value that the 
approximation to the second derivative can take. 

The purpose of the term EeH is to attract the snake to 
desired feature points or contours in the image. In this 
work we have used the mean value of the image (I(x,y)) or 
its gradient, depending on the feature that is being tracked, 
along the contour from v, to v , + ~ .  Thus, the E,,, at snaxel v, 
will depend only on the position of the snaxels v, and v,+I. 
That is, 

' ex ,  (vi ) = Econtv, -v+,, = f ( ' 3  vi 9 (4) 

3. DYNAMIC PROGRAMMING 

We will use the DP approach to minimize the energy in 
Eq. (1). Let us express the Energy of the snake remarking 
the dependencies of its terms: 

N-I N-l 

E,",,,(V) = c Em,(V,-1, v,, V,+J + L , ( V ,  7 v,,,) = c E,(V,-I, v,, v,+J 
,=O I =O 

( 5 )  
Although snakes can be open or closed, the DP 

approach can be applied directly only to open snakes. In 
this case the limits of Eq. 5 are adjusted to 1 and N-2 
respectively. 

Now, as described in [ 11, this energy can be minimized 
via discrete DP defining a two-element vector of state 
variables in the ith decision stage: (v,+/, vJ.  The optimal 
value function is a function of two adjacent points on the 

contour S,(v,+l,v,), and can be calculated, for every couple 
of possible positions for snaxels v , , ~  and v,, as: 

S, (v,+, v, = min[S,-, (v, v,-, ) + E, (v,-~ v , ,  v,+~ >I (6) 
VI-1 

&(VI, v0) is initialized to Eext(v0,vl) for every possible 
candidate pair (v0,vl) and from this, SI can be computed 
iteratively from i=I up to i=N-2 for every candidate 
position for v,. The total energy of the snake will be 

ESflOk(V) = min SN-* (VN-I,%-2) (7) 
'N-1 

Besides, we have to store at every step i a matrix which 
stores the position of v,-] that minimizes Eq. (6), that is, 

such that v,./ minimizes (6). M ,  (V,+I >VI  ) = VI-I 

By backtracking from the final energy of the snake and 
using matrix MI, the optimal position for every snaxel can 
be found. 

In the case of a closed contour the solution proposed in 
[4] is to impose the first and last snaxels to be the same, 
and fix it to a given candidate for this position. The 
application of the DP algorithm will produce the best 
result under this restriction. Then this initial and final 
snaxel is successively changed to all the possible 
candidates, and the one that produces a smaller energy will 
be selected. We use an approximation proposed in [SI that 
requires only two open contour optimization steps. They 
first find an open contour solution without any restriction 
at the end. Then the two points at the mid of this contour 
are taken as start and end points for the closed contour, 
and another optimization is run with these two points 
fixed. We will call this method the two-steps algorithm, as 
it implies two optimization steps. 

4. INTRODUCING MOTION ESTIMATION 

In the previous Section we have assumed that for every 
snaxel v, there are a finite (and hopefully small) number of 
candidates, but we have omitted how to select these 
candidates. The computational complexity of each 
optimization step is O(nm3), where n is the number of 
snaxels and m the number of candidates for every snaxel. 
Thus, it is very important to maintain m low. 

In [l] only a small neighborhood around the previous 
position of the snaxel was considered. However, the 
algorithm was iteratively applied starting from the 
obtained solution until there was no change in the total 
energy of the snake. This method has several 
disadvantages. First, like in the approaches which use 
variational techniques for the minimization, the snake can 
fall into a local minimum. Second, the computational time 
can be very high if the initialization is far from the 
minimum. 

In [4] and [5] a different set of candidates is considered 
for every snaxel. In particular, [4] establishes uncertainty 
lists for the high curvature points and defines a search 
space between these uncertainty lists. In [5] the search 
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zone is defined with two initial concentric contours. Each 
contour point is constrained to lie on a line joining these 
two initial contours. This approach gives very good results 
if the two concentric contours that contain the expected 
contour are available and the contour being tracked is the 
absolute minima in this area. However, these concentric 
contours are not always available for tracking. In tracking 
applications the motion and deformations of the contour 
can be very large from one image to the successive image. 
Thus, using a strip around the contour obtained in the 
previous image does not produce good results. Besides, we 
might be interested in tracking a local minimum. 

The solution we propose uses motion estimation in 
order to select the search space for every snaxel. 

A small region around every snaxel is selected as basis 
for the motion estimation. The shape of this region is 
rectangular and its size is application dependent. However, 
the region should be small enough so that its motion can 
be approximated by a translational motion. The 
compensation error for all the possible displacements 
(dx,dy) of the block in a given range is computed as: 

j=Rv ,=Rr 

MCE,o(dX,dY)= c y m o - ~ ? Y o - , ) - m o  - ‘ - ~ 7 Y o - , - d Y ) 1 2  
/=-Ry I=-& 

(8) 
Being (xh yo) the x and y coordinates of the snaxel v, in 

the previous frame, which we have called v , ~ .  The region 
under consideration is centered at the snaxel and with size 
2Rx in the horizontal dimension and 2Ry in the vertical 
dimension. 

The range for (dx,dy) determines the maximum 
displacement that a snaxel can suffer. The matrix 
MCEV,,(dx,dy) is stored for every snaxel, and the M best 
results are selected as possible new locations for snaxel v,. 

The DP algorithm described in Section 3 is now 
applied considering as candidates for every snaxel those 
locations that have been selected by the motion estimation 
algorithm. 

Besides, we have introduced a new term in the external 
Energy function in Eq. (4) that improves the tracking 
capabilities of the algorithm. It is a memory term which 
corresponds to the compensation error obtained in the 
motion estimation. In this way preference is given to those 
positions with the smaller compensation error. That is, the 
energy will be lower in those positions which texture is 
most similar to the texture around the position of the 
corresponding snaxel in the previous frame. This 
introduces the possibility to track smooth contours placed 
near strong contours. For instance, let us consider the 
tracking of the lips. In general, the outer contour of the 
lips is not a very clear contour. When the mouth is slightly 
open, the inner contour is much stronger and if a global 
search was made, the snake would change its position to 
occupy this other contour. However, by restricting the 
search to those positions with a similar texture to the 
position of the snaxel in the previous image and by 

introducing this new term in the energy we are able to 
track the outer contour even with strong motion of the lips. 
Thus, the external energy will be composed of two terms, 
the one which makes the snake be attracted by contours of 
the image, and this new one. Therefore, the expression for 
the external energy will be: 

Eat (Vi 1 = @contvt-,-vi + (1 - Y)McEv,o (v, 1 (9) 
The constant y can be set depending on the strength of the 
contour that is being tracked. If it is a strong contour y is 
chosen close to 1. Otherwise, more importance is given to 
the Motion Compensation Error term. 

5. TRACKING FACIAL FEATURES 

We have applied the previously described algorithm to 
facial feature tracking. The features of the face that are 
going to be followed are the contour of the face, the 
nostrils, the mouth and the eyebrows. Slightly adapted 
snakes are used in each case, that is, closed snakes without 
comer points for the contour of the face, closed snakes 
with two corner .points for the lips and open snake for the 
line that connects the nostrils. 

6. CONCLUSIONS 

We have presented a contribution to contour tracking 
using snakes. The objective is to take advantage of motion 
estimation in order to select a set of candidate positions 
for a given snaxel in the current frame, according to the 
information that we have for this snaxel in the previous 
frame. This selection of candidate positions is compatible 
with a Dynamic Programming implementation of the 
active contours algorithm. Furthermore, we have 
introduced a new term in the computation of the Energy of 
the snake, in order to introduce motion information. This 
approach reduces the computational cost with respect to 
other DP implementations, as only a small number of 
pixels have to be considered as candidates for every 
snaxel. It allows to track contours which are not the global 
minimum, as the snake is actually tracking the texture 
around the snaxel. It is also much more robust to 
deformations and large motion of the contours than the 
classical approaches. Furthermore, all the advantages of 
the DP approach are preserved, such as the possibility to 
enforce hard restrictions in the contour. 
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Figure 1. Examples of the tracking of facial features. 
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