
TEXTURE MAPPING BY SUCCESSIVE REFINEMENT

Stefan Horbelt, Philippe Thévenaz and Michael Unser

Biomedical Imaging Group, IOA, DMT
Swiss Federal Institute of Technology Lausanne

CH-1015 Lausanne EPFL, Switzerland

ABSTRACT

We define texture mapping as an optimization problem
for which the goal is to preserve the maximum amount
of information in the mapped texture. We derive a
solution that is optimal in the least-squares sense and
that corresponds to the pseudo-inverse of the texture-
mapping transformation. In practice, a first-order ap-
proximation of the least-squares solution is used as an
initial estimate for the mapped texture. This initial
solution is refined by successive approximation to yield
the least-squares optimal result. In essence, the pro-
posed multi-pass method acts like an adaptive anti-
aliasing filter.

keywords: texture mapping, least-squares approxi-
mation, successive refinement, anti-aliasing

1. INTRODUCTION

In computer graphics, texture mapping refers to a
warping process by which a texture image is trans-
formed geometrically to simulate a mapping onto a
given 3D surface. Texture mapping adds fine surface
details on an object, like color, specularities, bumps,
dirt, and so on, which leads to more realistic pictures
[3]. With texture mapping, a much lower polygon count
is needed to achieve results similar to a pure high-count
polygon model in which each polygon would carry one
value of a textured attribute. Textures are patterned
images created before the time-critical rendering. Ef-
ficient techniques exist to use textures for fast render-
ing. Bilinear texture mapping is commonly used and is
available in current graphics hardware. Here, we show
the limits of the standard texture-mapping methods
and propose a novel algorithm that is based on least-
squares approximation and successive refinement.

x
(s ,s)

T

T

screen space

y
(t ,t) x y

texture space

-1

Figure 1: Transformation T between screen space and
texture space.

2. STATE OF THE ART

We summarize texture-mapping methods from several
articles [1],[6] and two surveys [2],[4].

Nearest neighbor is the fastest method but gives
the worst quality. It maps the pixel’s screen coordi-
nates to texture coordinates and copies the value of
the closest texel. Bilinear interpolation combined
with Mipmapping pyramids is a common standard ap-
proach. Supersampling gives the highest quality but
is the slowest method. Supersampling renders the im-
age at (typically 16-times) higher resolution first, and
then reduces the rendered image to the final resolution
using standard anti-aliasing filtering and re-sampling.
The higher-quality methods generally use some kind

of texture anti-aliasing algorithm. Typically, one deter-
mines the footprint of a screen pixel in texture space,
and then takes the weighted sum over all texels inside
the borders of this influence region. The weights are
defined by an empirical filter function. The methods
can be distinguished by the filter function. Area sam-
pling uses a box filter, whereas elliptical weighted area
(EWA) uses a circular Gaussian filter assuming a cir-
cular pixel support. Two acceleration methods based
on tables have been proposed; they are Mipmap-
ping pyramids and summed-area tables. Addition-
ally, texture-mapping algorithms can be classified into
texture-space scan and screen-space scan algo-
rithms.

3. THE TEXTURE-MAPPING PROBLEM

The texture-mapping problem is to map some input
texture image ft to produce a screen image fs

fs(sx, sy) ∼= ft(T (sx, sy)), (1)

T (sx, sy) = (tx, ty), (2)

where the geometrical transformation T , e.g., a per-
spective mapping on a 3D surface (as seen in fig.(2)),
maps the screen coordinates (sx, sy) from the screen
space into the texture coordinates (tx, ty) in the tex-
ture space. Assuming that T is invertible, the dual
version of the problem is

ft(tx, ty) ∼= fs(T−1(tx, ty)), (3)

T−1(tx, ty) = (sx, sy), (4)

where T−1 is the reverse mapping of T . We have used
an approximate equality symbol in (1) and (3) because
the mapping will not be perfect—both image and tex-
ture grids are discrete, which entails some loss of infor-
mation.

4. LEAST-SQUARES TEXTURE MAPPING

In this section, we introduce a novel texture-mapping
algo based on least-squares approximation and succes-
sive refinement. As a quality criterion, we choose to
minimize the information loss of the mapped texture.
In other words, when we undo the texture mapping, we
would like to reconstruct the original texture as well as
possible. The loss of information is measured in the
least-squares sense and is optimized in texture space.

4.1. Continuous-screen model

We define a continuous model fs of the screen, which
lives in the screen space generated by the functions ϕs:

fs(sx, sy) =
∑

k

∑
l

cs(k, l) · ϕs(sx − k, sy − l), (5)

where (sx, sy) are the screen coordinates, and where
ϕs(sx − k, sy − l) are the screen basis functions at in-
teger shifts (k, l). The basis functions are simply shift-
version of a generating function ϕs(x, y); for example, a
separable B-spline or any other standard interpolation
function.
We can attempt to recover the original texture ft by

applying the inverse mapping (3)

f̃t(tx, ty) = fs(T−1(tx, ty)). (6)

4.2. Least-squares criterion

Assume the texture model ft is given. Then, we opti-
mize the texture mapping on the screen fs by minimiz-
ing the approximation error

εt = mincs

∥∥ft(tx, ty)− fs(T−1(tx, ty))
∥∥ .

Note that we measure the approximation error in the
texture space because this is where the original texture
ft is specified.

4.3. Discrete texture mapping

In the following, we assume that the input texture is
specified by its texel values ft(m), m = (m, n). To-
gether with the inverse texture mapping (3) and with
the continuous-screen model (5), the transformation of
the screen coefficients cs(k), k = (k, l) to the texels ft

is described as

f̃t(m) =
∑
k

cs(k) · ϕs(T−1m − k). (7)

In order to use matrix notation, we rearrange
the two-dimensional arrays (images and ar-
rays of coefficients) in raster-scan order to
one-dimensional arrays: f̃ t =

[
f̃ t[m]

]
=(

f̃t(1, 1), · · · , f̃t(1, N), · · · , f̃t(M, 1), · · · , f̃t(M, N)
)
,

where (M, N) is the size of the texture. The same
applies for cs = [cs(k)].
The key idea is to determine the cs such that f̃ t is a

good approximation of f t. The equation (7) in matrix
form is

f̃ t = A · cs (8)

A = [a(m, k)] =
[
ϕs(T−1m − k)

]
. (9)

In order to correctly reproduce a constant, we require
that ϕs satisfies the partition of unity:∑

k∈Z

ϕs(x − k) = 1. (10)

A direct implication is that the rows of A sum up to
one: ∑

k

a(m, k) = 1.

4.4. Least-squares solution

Given the original texture ft, we want to minimize

mincs

∥∥∥ft(m, n)− f̃t(m, n)
∥∥∥2

l2
= mincs

‖f t − A · cs‖2

(11)
to get the least-squares solution cs. The solution can be
expressed explicitly in terms of A+, the pseudo-inverse
of A:

cs = (A�A)−1A� · f t = A+ · f t.

Because of the large size of the involved matrices,
the direct computation of the inverse (A�A)−1 is too
expensive to be carried out in practice. In first approx-
imation, we will assume that it is close to a diagonal
matrix Λ = diag(λ1 . . . λk) ∼= (A�A)−1 and we write

A+ ∼= Ã
+
= Λ · A� =

[
λk · ϕs(T−1m − k)

]
. (12)

The partition of unity (10) must again be fulfilled. This
time, all columns of A+ have to sum up to one, due to
the transposition of A. We set the elements of Λ to be

λk =
1∑

m ã(m, k)
,

which ensures that the partition of unity is satisfied by
the inverse approximation as well.

4.5. Successive approximation

The first-order approximation of the texture mapping
is

cs = A+ · f t
∼= ΛA� · f t. (13)

This solution can be refined by successive approxima-
tion, where the error correction term is B = (I −
Ã

+
A). We give the successive least-squares texture-

mapping algorithm in pseudo-code language:

c0
s
∼= Ã

+ ·f t, i = 0 // initial approximation

DO i = i + 1

∆f t = f t −Aci−1
s // map back to get loss

∆cs = Ã
+
∆f t // map the loss to screen

ci
s = ci−1

s +∆cs // correct the screen

WHILE (‖∆f t‖ > ε and ‖∆f t‖ decreasing)

Rearranging the formulas, we get the recursive form

ci
s = B · ci−1

s + Ã
+ · f t (14)

and from it the close-form solution

ci
s = Bi · c0

s +
i−1∑
k=0

Bk · Ã+ · f t. (15)

The term with the initial approximation c0
s of the

screen in (15) vanishes with increasing iterations i.
The conditions for convergence are that the matrix
Ã

+
is well conditioned, and that the eigenvalues of

B = (I−Ã
+
A) are smaller than 1. Since the matrices

A and A+ strongly depend on the geometric mapping
T , we cannot guarantee that the algorithm will con-
verge for all possible configurations.

(a) (b)

(c)
Figure 2: Mapped textures: (a) by nearest-neighbor
method, (b) by trilinear mipmapping, (c) by succes-
sive refinement using linear-spline model and multi-
resolution version of the algorithm.

The inversion of the matrix A makes sense only in
areas where the texture is shrunk while mapped to the
screen. Otherwise, the texture mapping problem is
ill-posed and the solution is manifold. In the under-
determined case, the texture is mapped by interpola-
tion with the classical method instead (e.g., bilinear
mipmapping). In the underdetermined area the nor-
malisation weights λk are smaller than 1, because too
few texels contribute to one screen pixel, typically less
than 4 for the bilinear case (N = 1). Based on these
two rules, we determine the area on which to succes-
sively refine the screen. A pixel that is close to the
horizon maps to a large texture area. For such large
texture reduction factor, we switch to a lower texture
resolution (mipmapping) which reduces the computa-
tion cost.

5. RESULTS

To demonstrate our algorithm, we map a checker-
board onto an infinite plane. The results of the sim-
ple nearest-neighbor texture-mapping algorithm are
shown in Fig. 2a. This image exhibits severe alias-
ing artifacts. Trilinear mipmapping—a good standard
method—reduces these effects (Fig. 2b). The proposed
method (Fig. 2c) avoids the aliasing effects because it
implicitly acts like an optimal anti-aliasing filter. Here,
the underlying continuous model for the successive-
refinement method is a bilinear spline.
Area sampling corresponds to the first (and only)

iteration of the proposed method, using a spline of de-
gree N = 0 (nearest neighbor). For non-trivial degrees
(N > 0), the successive-refinement method gets close
to the optimal biorthogonal prefilter after several it-
erations. This filter resembles the filter of the EWA

(1)

(2) (3a)

(3b) (3c)

Figure 3: Reduction-by-two mapping: (1) Original tex-
ture, (2) Simple resampling (aliasing artifacts), (3) Suc-
cessive refinement with: (3a) bilinear spline, (3b) bicu-
bic spline, (3c) cubic Keys kernel.

2 4 6 8 10 12 14
22

22.2

22.4

22.6

22.8

23

Error in texture space

iterations i (a)

P
S

N
R

n=1

n=3

Keys

linear spline
cubic spline
Keys

Figure 4: The reconstruction quality measured between
backprojected texture and original texture increases
with the number of iterations.

method, but tends to be much sharper. In addition,
our method preserves the partition of unity.
To verify our method, we consider the simple

reduction-by-two case because the l2-optimal solution
is known and can be obtained by alternative means [5].
Experimental results for different interpolation meth-
ods are shown in Figure 3. The cubic interpolators
(Keys and B-spline) tend to give better results than
the linear one. The PSNR in texture space is higher
and the visual appearance is slightly better. The graph
in Figure 4 gives the evolution of the error in texture
space—the criterion optimized by the algorithm—and
illustrates the convergence behavior. We note that the
basis functions that are more localized (linear spline
and Keys) converge in less iterations. The cubic spline
needs more iterations but eventually outperforms the
other methods. We verified that the algorithm con-
verges to the l2-optimal solution obtained by [5].

6. CONCLUSION

We have defined a novel way to solve the texture-
mapping problem. The solution minimizes the loss of
information and is optimal in the least-squares sense.
The practical successive texture-mapping algorithm
computes a first approximation of the pseudo inverse
of the interpolation matrix A and then uses successive
refinement to yield the optimal solution. Our method
requires the geometric mapping T to be invertible. The
images obtained are more detailed and reveal no alias-
ing artifacts. Moreover, if our screen model is piece-
wise constant, then the first iteration of our method is
equivalent to area sampling.

7. REFERENCES

[1] D. Cohen-Or, ”Exact anti-aliasing of textured terrain
models”, Int. Journal of Computer Graphics, vol. 13,
no. 4, pp. 184-198, 1997.

[2] P.S. Heckbert, ”Survey of texture mapping,” IEEE
Computer Graphics and Applications, vol. 6, no. 11, pp.
56-67, 1986.

[3] F. Jordan, S. Horbelt, T. Ebrahimi, ”Streaming
of photo-realistic texture mapped on 3D surface”,
ICIP’97 , vol. 2, pp. 390-393, 1997.

[4] D.F. Rogers, Procedural elements for computer graph-
ics, 2nd. Ed., McGraw-Hill, 1998.

[5] M. Unser, A. Aldroubi and M. Eden, ”B-spline signal
processing: Part II — Efficient design”, IEEE Trans.
Signal Proc., vol.41, no.2, pp.821-848, 1993.

[6] L. Williams, “Pyramidal parametrics”, Siggraph’83 ,
vol. 17, pp. 1-11, 1983.

