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ABSTRACT

In recent years wavelets have been widely used for signal com-
pression, image compression being a prime example, and for sig-
nal denoising. What makes wavelets such an attractive tool is their
capability of representing both transient and stationary behaviors
of a signal with few coefficients. In this paper we consider the
problem of compressing and denoising a particular class of func-
tions: piecewise polynomial signals. We show the limit of usual
wavelet coders and present an alternative compression algorithm.
The main innovation of the algorithm is that it tries to efficiently
compress the significant coefficients of the wavelet decomposition
rather then the zero coefficients as in usual coders.

The proposed algorithm can potentially be extended to more
general signals and represents an effective solution to problems
like signal denoising and image compression.

1. INTRODUCTION

Wavelets are known to be efficient in representing piecewise
smooth functions. Away from singularities, the inner product be-
tween a wavelet (with a number of zero moments) and a smooth
function will be either zero or very small [8, 9]. At singular points,
a finite number of wavelets concentrated around the discontinuity
lead to non-zero inner products. This is in contrast with Fourier
series where discontinuities lead to many larger coefficients. This
ability of wavelets expansions to capture both smooth and singu-
lar parts of a signal has been used in many applications, including
denoising and compression.

But as far as compression is concerned, in [5] it was shown that
for the class of piecewise polynomial signals wavelets are far from
reaching the asymptotic rate-distortion behavior, since a wavelet
coder behaves as :

Dy(R) = C(1 4+ a/CyuR)2™ VO E,

while, if we suppose that the degrees of polynomials and the num-
ber of singularities are provided by an oracle [5] then the rate dis-
tortion curve is: '

D,(R) = G2 %R,
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1t is the purpose of this paper to improve the wavelet coder for
piecewise polynomial signals so as to reduce the gap with the ora-
cle method. We start by noting that the poor behavior of the usual
wavelet coder comes from the independent coding of wavelet co-
efficients around discontinuities. However, these coefficients are
highly dependent across scales. We thus introduce the notion
of “footprints”, which are the traces left by singularities in the
wavelet domain. By coding these footprints instead of the indi-
vidual wavelet coefficients, we are able to improve state of the art
of wavelet coders.

It is of interest to compare footprints with zerotrees [7]: ze-
rotrees indicate absence of singularities, while footprints describe
singularities. Depending on the density of singularities, footprints
can be more efficient than zerotrees. But the real difference ap-
pears around singularities, which are not well represented by ze-
rotrees (instead, a number of non-zero coefficients are coded inde-
pendently) while they can be more efficiently represented by foot-
prints.

Since wavelets are often used for compression of images, the
notion of footprints can be used there as well. It is to be noted that
singularities in images are typically one dimensional (a contour),
and thus wavelets are not necessarily the best bases for represent-
ing such singularities.

2. FROM DISCONTINUITY CHARACTERIZATION TO
FOOTPRINTS

We say that a function f is piecewise smooth if it is a regular func-
tion (i.e. n times continuously differentiable function) everywhere,
except for a finite number of points of discontinuity (breakpoints).
Real life signals are often considered piecewise smooth and usu-
ally the essential information of the signal is carried by the discon-
tinuities. Thus their efficient characterization is the key problem
in signal compression or denoising.

Fourier transform is not a good tool to represent piecewise
smooth functions, since the spectrum decay of the Fourier trans-
form depends on the global regularity of the signal and thus it is
conditioned by the discontinuities.

On the other hand wavelets are able to characterize the local
regularity of a function. In particular it can be shown that if we
take a wavelet with enough vanishing moments then the speed of
decay of the wavelet coefficients across scales depends on the local
Lipschitz regularity of the signal [4]. So around the discontinuities
the wavelet coefficients have a slower decay (the Lipschitz coef-



ficient is small) while around the regular part of the signal their
decay is faster (rather large Lipschitz coefficient). In particular if
the smooth signal is a polynomial of maximum degree n and if
the wavelet has at least n + 1 vanishing moments then the inner
product between the wavelet and the polynomial will be exactly
zero. So for piecewise polynomial signals the wavelet coefficients
are non zero only around discontinuities. This is equivalent to say-
ing that all the information about the signal is contained in the few
significant wavelet coefficients around the discontinuities.

Similar properties apply to discrete signals and discrete wavelet
bases. Here again the discrete wavelet coefficients away from
discontinuities are very small or zero. In Figure 1 we show the
wavelet decomposition (using critically subsampled filter banks)
of a discrete time piecewise polynomial signal. We can clearly see
that the significant coefficients are only around discontinuities.

Fig. 1. Wavelet decomposition of a piecewise polynomial func-
tion.The first 4 level are wavelet coefficients, while the last level
are scaling coefficients

If we use a non redundant discrete wavelet basis to decompose
our signal then the wavelet coefficients are not shift invariant. This
means that the same discontinuity at two different positions will
be represented by different wavelet coefficients.

In case of piecewise polynomial functions and non redundant
wavelet decomposition the significant coefficients have some pe-
culiar property:

o The significant coefficients are spatially located around the

signal discontinuities.

o At each discontinuity there are no more than L —1 significant
coefficients per scale, where L is the length of the wavelet
filter.

o The significant coefficients generated by a discontinuity are
highly correlated (Actually, they are deterministic, since they
only depend on the characteristic of the discontinuity).

In traditional wavelet based compression and denoising algo-
rithm these coefficients are processed independently . In case of
compression they are scalar quantized !, while in case of denoising
they are thresholded independently. However they should be gath-
ered in a vector and jointly processed. For this reason we introduce
the notion of footprint which is a vector containing all significant
wavelet coefficients across scales around a discontinuity. For in-
stance if our wavelet filter has length L and we have J wavelet
decomposition levels then the footprint of a discontinuity is a vec-
tor of dimension (J + 1) x (L — 1) containing L — 1 wavelet

! Actually, in some compression algorithms the significant coefficients
are compressed using context based coders, here the correlation between
significant coefficients is partially exploited
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coefficients at each scale in the position corresponding to the dis-
continuity position plus the L — 1 scaling coefficients at the same
position.

Moreover:

1. Footprints are not shift invariant.

2. Each footprint implicitly contains all the information related
to the discontinuity that generated it: amplitude of the dis-
continuity and characteristic of the two polynomials that are
around the discontinuity.

The notion of footprint is valid also for piecewise smooth func-
tions, however in this case the knowledge of all the signal foot-
prints is not enough to completely describe the signal, since the
wavelet coefficients away from discontinuities are small but not
zZero.

Finally the definition of footprint can be naturally extended to
the case of redundant wavelet decomposition (i.e., oversampled
filter banks). In this case footprints become shift invariant.

3. A WAVELET BASED CODER FOR PIECEWISE
POLYNOMIAL FUNCTIONS

The compression algorithm we propose takes the results of the pre-
vious section as a starting point. Since the knowledge of footprints
is enough to completely describe our signals, our compression al-
gorithm consists in first finding the footprints of the signal and then
coding them efficiently.

Starting from the finest scale of the wavelet decomposition
where discontinuities can be detected, the coder looks for signifi-
cant coefficients, when one is found its position is scalar quantized,
the corresponding footprint is generated and then it is vector quan-
tized. .

Notice that given the positions of the discontinuities and the
corresponding footprints which describe them, the signal is com-
pletely determined except for its mean. Consider, for example, the
two discontinuities represented in Fig.1. With the first footprint we
define the characteristic of the first and the second polynomial and
of the amplitude of the first discontinuity, with the second foot-
print we define the amplitude of the second discontinuity and the
characteristic of the third polynomial. Thus the only information
we need to completely define the signal is its mean.

In terms of compression given a total bit budget R¢.: and a sig-
nal characterized by no more than M discontinuities, we allocate
R, bits to code each position of a discontinuity (uniquely defined
by the position of the significant coefficients in the finest level),
R; bits to vector quantize each footprint and Ry, bits to code the
mean. Based on the results in [5], the allocation strategy is approx-
imately defined by the following equations:

- 2 2
Ry = ZM(N+2)+1 Riot —2MK + IM(N+2)+1

Ry = 2(N+1)

2(N+1)
s ftot + CM + DK + sy (D
_ 2M(N+2)
R = sy Reot = MK — sy

with K = (N +1)/(2M(N + 2) + 1) log,(N + 1) and N rep-
resenting the maximum degree of any polynomial in the signal.
The vector quantizer is constructed using the generalized Lloyd-
Max algorithm [3]. For each of the 27 possible quantized posi-
tions the vector quantizer constructs a different codebook which
contains the 2%/ footprints related to the best breakpoints in the



mean square error sense for that position. It can be shown that the
codewords generated in this way keep belonging to the space of
piecewise polynomial functions, so they keep representing discon-
tinuities between two polynomials.

Notice that since footprints are not shift invariant, it is not pos-
sible to compare footprints related to different positions; in fact
the same discontinuity but in two different locations generates two
different footprints, so the square error between them is not zero.
Now if the signal we have to code has a discontinuity at a position
N which is one of the 2% positions for which we have designed
a codebook then we can use the corresponding codebook to find
the best footprint for that discontinuity. On the other hand if the
position N is not one of these 2% positions than it is not pos-
sible to use any of the designed codebooks, since the distances
between footprints in the codebook and the footprint we have to
code are misleading. To overcome this problem a shifted version
of the codebook related to the quantized position closest to N is
considered for vector quantization. Basically if the position V is
going to be scalar quantized to the position N then the correspond-
ing footprint will be vector quantized with a shifted version of the
footprint codebook related to the position V.

The following table presents a pseudo-code description of our
coder.

Off line:

1. Given the statistical characteristic of the input signals,
chose the allocation strategy defined by equation 1

2.Choose the number J of wavelet decomposition levels.

3. For each of the 2% positions construct a different
codebook using the generalized Lloyd-Max algorithm.

On line:
Encoding:

1. Scalar quantize the mean of the signal to be
compressed and send it to the decoder.

2. Make a J level wavelet decomposition of the zero mean
signal.

3. Using a discontinuity detector
in wavelet domain (e.g. looking at the finest scale),
find the discontinuity position.

4. Find the best footprint for that discontinuity.

5. Send the position and the footprint indices to the
decoder.

6. Repeat step 3-4-5 until all discontinuities are coded.

The decoder operates directly in the time domain. With the
first position/footprint indices received it estimates the position
and the characteristics of the first discontinuity including the
characteristics of the input and output polynomials. For each new
pair position/footprint of indices it estimates the amplitude of the
discontinuity and only the characteristics of the output polynomial
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and concatenate it to the old decoded discontinuities. When all
the discontinuities are coded the quantized mean is added to the
reconstructed signal.

It is interesting to notice that our proposed compression ap-
proach is quite different from traditional wavelet based compres-
sion algorithms. In fact in traditional approaches the main interest
is in representing the long sequences of zeros or small wavelet co-
efficients efficiently (zerotrees being a main example [7]), while
our coder is only interested in the representation of the significant
coefficients.

As it will be shown in the next section, the proposed algorithm
is very efficient not only for signal compression but also for de-
noising.

4. EXPERIMENTAL RESULTS

In this section we want to assess the performance of our algo-
rithm. We consider piecewise polynomial signal of maximum de-
gree N = 1 (piecewise linear), the discontinuity positions are uni-
formly distributed on the time interval. We will show that our algo-
rithm outperforms a traditional compression algorithm like SPITH
[61.

Moreover the concept of footprint can be used in other applica-
tions like signal denoising and also here the results are encourag-
ing. .

As a first experiment we compare the proposed algorithm wit
one of the most competitive wavelet based compression algo-
rithm: SPITH ({6]). SPITH has been designed to work on im-
ages, so to make our comparison we have modified it to work on
1-dimensional signals. In table 1 we compare the PSNR at differ-
ent bit rates for the case of piecewise linear signals and no more
than M = 3 discontinuities. Figures 2 and 3 show an example of
reconstructed signal using SPITH or our algorithm. The algorithm
based on footprints gives better results either in terms of PSNR or
visually.

0.07b/p | 0.09b/p | 0.1blp
SPITH 13.5dB 18.6dB | 20.1dB
Our coder | 23.1dB | 24.1dB | 25.6dB

Table 1. PSNR results.

: |
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R

450
. PSNRx24.708

Fig. 2. Line: original signal. Dash-dotted: signal compressed
using SPITH algorithm. PSNR=24.7dB, rate=0.15bps

This comparison is not completely fair since SPITH has not
been designed to compress piecewise polynomial signals, anyway



350

Fig. 3. Line: original signal. Dashed: signal compressed using
footprints based algorithm. PSNR=30.2dB, rate=0.1bps

we think it is useful to show that our algorithm can outperform
traditional wavelet based compression algorithms.

Footprints can also be extremely effective for denoising. In a
first approach the noisy piecewise constant signal is transformed
into the wavelet domain. The wavelet coefficients are hard thresh-
olded and then the signal is denoised and compressed using the
algorithm presented in the previous section. In Figure 4 we show

the results and compare the proposed approach with the usual de-
" noising algorithm based on soft-thresholding {1]. On average our
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Fig. 4. a) Original Signal, b) Noisy Signal (SNR=19.0), ¢) De-
noised Signal using footprints (SNR=22.6dB), d) Denoised Signal
with Soft-Thresholding (SNR=21.3dB)

algorithm outperforms the Soft-Thresholding algorithm by about
3dB. However footprint denoising can be done without compres-
sion. Further results on this topic can be found in [2].

Finally we would like to know if these results can be extended
to real-world signals like images. At the moment it is not clear
how to extend the notion of footprint to the two-dimensional non-
separable case. However if we decide to compress each line of an
image independently then the results are quite encouraging. In Fig-
ure 5 we show a single line of the image “Lena” and its piecewise
constant approximation obtained with our algorithm. We believe
that for increasing bit rates the algorithm will better represent the
polynomial behavior underlying the image, while the finer details
could be represented as an additive noise-like residual. However it
is too early to say if this kind of approach can lead to a competitive
image compression algorithm. A true two dimensional version of
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Fig. 5. Piecewise constant approximation of a line of Lena

footprints is a topic under investigation.

5. CONCLUSIONS

In this work we have addressed the problem of efficiently com-
pressing piecewise polynomial signals. We have analyzed the cor-
relation existing between wavelet coefficients and introduced the
notion of footprints. Based on the idea of footprints, we have de-
signed a new wavelet coder that outperforms traditional wavelet
based compression algorithms.

Moreover the concept of footprint can be used also in other
context like signal denoising. First results are promising. We be-
lieve that footprints can be successfully used also for compression
of piecewise smooth signals and two-dimensional signals like im-
ages. These topics are under investigation.

6. REFERENCES

[1] D.L.Donoho “De-Noising by soft thresholding,” IEEE
Trans. Info. Theory 41(3): 613-627, May 1995.

PL. Dragotti and M. Vetterli “Shift-Invariant Gibbs Free
Denoising Algorithm based on Wavelet Transform Foot-
prints”, Accepted for SPIE2000, Wavelet Application in
Signal and Image Processing, August 2000.

A. Gersho and R. Gray Vector Quantization and signal
compression, Kluwer Academic Publishers, Boston, 1992.

[2]

[3]
[4] S.Mallat A wavelet tour of signal processing, Academic
Press, 1998.

P. Prandoni and M. Vetterli “Approximation and Com-
pression of Piecewise Smooth Functions,” Phil. Trans.
R.Soc.Lond. 1999.

A.Said and W.A Pearlman “A New, Fast, and Efficient Im-
age Codec Based on Set Partitioning in Hierarchical Trees”,
IEEE Trans. Circuits and System for Video Technology,
Vol.6, No.3, pp. 243-249, Jun. 1996.

J.M. Shapiro, “Embedded image coding using zerotrees of
wavelets coefficients,” IEEE Trans. Signal Processing, vol.
41 pp.3445-3462, Dec. 1993.

[8] G. Strang and T. Nguyen Wavelets and Filter Banks
Wellesley-Cambridge Press.

[9] M.Vetterli and J. Kovatevié, Wavelets and Subband Cod-
ing, Prentice Hall, 1995.

[5]

[6]

g



