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ABSTRACT

Spatial resolution of Magnetic Resonance Angiography
(MRA) makes it a powerful tool for diagnosis and surgical
planning. However, image interpretation and visualization
tools are missing, and three-dimensional measurements
are not usually accessible [6]. Flexible visualization of the
whole vascular tree and precise quantification of
phenomenons like carotid stenosis are applications of an
automated processing of MRA [5]. Building an accurate
model of a tubular objects network such as bronchi or
blood vessels can provide a substantial help for 3D
visualization and quantification [4].

We present the tracking algorithm of centrelines that
makes very few assumptions on the structure grey-level
profile. The main originality of this work is the accurate
3D centreline tracking process which provides subvoxel
accuracy and deals with bifurcations. This approach has
been successfully applied to the cerebral vasculature in
MRA images.

1. INTRODUCTION

Medical imaging modalities such as Magnetic Resonance
or Scanner are able to provide high-quality 3D images of
various body areas. Extracting and processing 3D
structures from those images is an important issue, as
visualization and quantification  problems are much more
difficult than for 2D modalities.

Many different approaches exist to address this issue :
linear multiscale analysis with a structure model, grey-
level model matching, skeletonization, iterative methods,
detection of structures using filters, and curve or surface
optimisation.

Once one of these methods is used, one can obtain a
set of primitives : 2D or 3D analytically defined
centrelines,voxels or points ordered lists, connected or
disconnected linear segments, regions, probability maps,
sets of regions of interest, or edges.

Not all of these methods and extracted primitives are
suited for an accurate representation of structures.

We present an iterative tracking method that detects
the centreline of a 3D tubular structure with subvoxel
accuracy and that is suited for further visualization and
quantification issues.

2. METHOD

2.1.  Tubular structure extraction

A segmentation step applied to original images provides
unstructured sets of connected voxels. The structures of
interest have to be identified from those sets. We use a
two-step approach to extract tubular tree structures from
the 3D image : centerline tracking with detection of
bifurcation and tree representation of the network.

2.2.  Centerline tracking

Tracking is an iterative process with subvoxel accuracy. It
detects the centerline of tubular objects using the
segmented image. To insure subvoxel accuracy, tracking
has to be processed in a continuous 3D space obtained by
interpolation. A set of centreline points {Pi} is computed
by this method and interpolated by a B-spline curve [1].

From a point given point Pi and a given direction Di, a
local computation is done in a search area to find the point
Pi+1 and direction Di+1. The search area is a mobile
parallelepiped built (Fig. 1) at each step according to Pi

and Di values. The dimensions of the parallelepiped, Li, li
and Hi are computed dynamically and evolve with
estimated object diameter and local curvature.

Figure 1 : the local search area with parameters
{ Pi, Di, Li, li, Hi}
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Let Pi be the current point and Di the current tracking
direction.

Let Li, li and Hi be the dimensions of the box in integer
number of voxel.

Let α∈ [-li ; li], β∈ [-Li ; Li], γ∈ [0, Hi].

Let ii DPX















+=

γ
β
α

γβα ,, ,

and  Aα,β,γ  a weight associated to Xα,β,γ.
The interpolated intensity at Xα,β,γ is noted Im(α,β,γ).
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Parameters kp and kd have a fixed value corresponding
to the maximal curvature of vessels that can be tracked by
this technique. For a given set {kp, kd}, the maximum
curvature that can be estimated by the tracking algorithm
is limited by the dimensions of the paralleliped which are
computed at each step of the tracking.

2.3. Detection of bifurcations

In order to detect bifurcations and end of structures,
connnectivity informations are used. Two quantities are
computed : NV, the number of volumic connected
components inside the parallelepiped, and NS, the number
of surfacic connected components at the boundaries of the
parallelepiped. Relative values of these quantities indicate
whether to check for a bifurcation (Fig. 2b) or not (Fig.
2a). Values of NV and NS both equal to 1 indicate an end
of structure.

   

a) NV = 1; NS = 2             b) NV = 2; NS = 5
Figure 2 : Possible voxel configurations inside the parallelepiped

with NV and NS values.

3. ACCURACY OF THE METHOD

Several different synthetic image sets have been used to
test the various aspects of the tracking algorithm (Fig. 3) :
straight tubes, 3 3D-Lissajoux shapes, and Y-fork shapes
with angle varying from 20° to 160° by a step of 20°. All
images are generated using a second-order B-spline curve.
The orthogonal plane is calculated along the spline course
and the cross section is generated in each plane. For each
shape, 4 diameters are generated :1, 2, 4 and 6 voxels. The
intensity profile of the generated section is a gaussian.

Difference in position between the nearest points (∆P)
and difference in orientation between those points (∆Θ)
are measured between the synthetic object centerline and
the detected B-spline curve.

  

Figure 3 : (from left to right) 3D rendering of a Lissajoux shape,
20° Y fork shape and 160° Y fork shape. Diameter is 4 voxels.

3.1.  Tracking of a single structure

On each image, the minimum, maximum and average
value of  ∆P and ∆Θ are measured. Average and standard
deviation of those values on the 24 images are listed
below in table 1.

∆P(mm) ∆Θ (°)
Avg Std dev avg std dev

Min 0.12 0.01 0.01 0
Max 1.49 0.12 26.32 6.58
Avg 0.68 0 1.31 0.10

Table 1 : global results for the tracking of  straight tubes and
lissajoux shapes.
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3.2.  Robustness to user interaction

Initial values D0 and P0 are interactively provided by the
user. The assumptions made on the choice of P0 and D0

are that P0 is inside the vessel to identify, P0 is not located
on a junction, and that the angle between the true
orientation of the vessel and D0 is less than 45°. The limits
of the tracking accuracy with respect to the interactive
initial values are evaluated :

∆P(mm) ∆Θ (°)
min 0.01 0

max 2.29 95.93

avg 0.69 2.81
Initial position outside the structure with good orientation

∆P(mm) ∆Θ (°)
min 0.11 0.01

max 0.98 44.97

avg 0.68 1.56
Initial position in the structure - orientation shift : 45°

Table 2 : ∆P and ∆Θ values for different initial settings of P0 and
D0

The tracking fails for orientation shifts superior to
85°. An end of structure is detected instead.

3.3.  Application to real images

The vessels in real angiographic images don’t exhibit such
an ideal grey leve profile. Images are noisy and vessels
sometimes present discontinuities or a varying intensity,
especially in MRA [3]. The robustness of the tracking
method is evaluated relatively to both phenomenons.

The synthetic image of a straight structure is modified
as follows (on Fig. 4 from left to right) : two consecutives
slices are removed from the image perpendicularly to the
structure, the intensity is progressively reduced to 50 % of
its original value, and another slice is removed from the
image.

Figure 4 : tracking of a discontinuous structure

∆P(mm) ∆Θ (°)
min 0.66 0.01
max 1.44 17.55
Avg 0.74 2.01

Table 3 : values of ∆P and ∆Θ for the tracking of a
discontinuous tubular structure

An additive uniform noise is added to the image. The
noise level is defined by its amplitude relatively to the
maximum intensity in the image.

Noise amp avg ∆P (mm) Avg ∆Θ (°)
5% 0.68 1.49

10 % 0.69 1.46
20 % 0.73 5.02

Table 4 : average values of ∆P and ∆Θ at different levels of
noise.

The tracking method fails when the noise value
reaches the intensity of the structure to be detected.
Voxels belonging to the background become connected to
the structure.

We estimate the expected error on cross-sectional area
measurement as err = 1-cos2(∆Θ). err is always
inferior to 1 %. Significant results for further quantitative
measurements were obtained.

3.4.  Evaluation of the junction detection

Junctions from 20° to 160° are always detected by our
algorithm. Failure occurs for angles of 10° or less and
170° or more. Figure 5 shows the tracking of a complex
structure with 3 bifurcations ranging from 20° to 70°.

Figure 5 : tracking of a complex structure



4. RESULTS ON ANGIOGRAPHIC IMAGES

4.1.  Image pre-processing

The method is applied to 3D Magnetic Resonance
Angiograpy (MRA) images of the cerebral vascular
network. A specific imaging sequence is designed and the
resulting image is segmented before tracking [2].

We show results of our tracking algorithm on MRA
and Digital Substracted Angiography (DSA) image. As
the vessels present a strong contrast in DSA images, a
simple thresholding is used as pre-processing.

4.2.  Results on MRA images

No reference centerline is available to assess the
quality of our tracking algorithm. Results are visually
examined. Vascular tree is well detected. Centerlines are
well located for carotid arteries, middle cerebral arteries
and the vertebral artery (Fig. 6).

Figure 6 : part of the tracking of the cerebral arterial tree from 3
seed points.

The tracking process doesn’t stop at the stenosis
location, and the detected centerline follows the axis of
the vessel (Fig. 7).

Figure 7 : carotid artery stenosis tracking

4.3.  Results on DSA image

DSA is another imaging modality for blood vessels. The
substraction between two acquisition steps provides an
improved contrast on the resulting image. The image is
located at the top of the inferior members (femoral artery).

Figure  8 : A part of the tracking process on a DSA image
of the inferior members.

5. CONCLUSION

In this paper, tracking of tubular objects network from 3D
images has been presented and tested on synthetic images.
The proposed method is a full 3D one and handles a large
range of bifurcations. Its accuracy is better than 0.4 mm in
position and 6° in orientation on synthetic images. The
algorithm shows robustness to user interaction, noise and
discontinuities in the structures.

The method is applied to MRA healthy volunteers and
pathologic images after image pre-processing. The
tracking algorithm has also been succesfully tested on
Digital Substracted Angiograms (DSA) of inferior
members area. Current works focus on 2D and 3D
quantification of vessel diameter and cross-sectionnal area
to help visualization and stenosis detection.
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