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ABSTRACT 

We present an estimation-theoretic approach to curve evolution for 
the Mumford-Shah problem. By viewing an active contour as the 
set of discontinuities in the Mumford-Shah problem, we may use 
the corresponding functional to determine gradient descent evo- 
lution equations to deform the active contour. In each gradient 
descent step, we solve a corresponding optimal estimation prob- 
lem, connecting the Mumford-Shah functional and curve evolution 
with the theory of boundary-value stochastic processes. In em- 
ploying the Mumford-Shah functional, our active contour model 
inherits its attractive ability to generate, in a coupled manner, both 
a smooth reconstruction and a segmentation of the image. 

Next, by generalizing the data fidelity term of the original 
Mumford-Shah functional to incorporate a spatially varying penalty, 
we extend our method to problems in which data quality varies 
across the image and to images in which sets of pixel measure- 
ments are missing. This more general model leads us to a novel 
PDE-based approach for simultaneous image magnification, seg- 
mentation, and smoothing, thereby extending the traditional ap- 
plications of the Mumford-Shah functional which only considers 
simultaneous segmentation and smoothing. 

1. INTRODUCTION 

A novel active contour model is introduced in this paper for the 
Mumford-Shah problem of simultaneous image smoothing and seg- 
mentation. In particular, by constraining the set of discontinuities 
in the Mumford-Shah problem to correspond to an evolving set of 
curves, we derive the gradient descent curve evolution that seeks 
the local minimum of the Mumford-Shah functional. Each gra- 
dient descent step involves solving a corresponding optimal es- 
timation problem, namely the estimation of the noise-free image 
given the noisy image data and the current estimate of the bound- 
ary curve. The solution of this estimation problem comes from the 
theory of boundary-value stochastic processes, which leads to de- 
coupled partial differential equations (PDE's) in space whose solu- 
tions produce the optimal image estimates in each of the connected 
regions separated by the current curve estimate. This theory also 
gives us boundary conditions for these estimates along the current 
estimate of the boundary curve which are directly used in evolving 
the curve. 
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This active contour model can be considered as a curve evo- 
lution driven by solutions of a continuum of auxiliary spatial es- 
timation problems. Our work may be regarded as an extension of 
several recent region based approaches to curve evolution [2,5,7]. 
In particular, this work naturally generalizes the very nice work 
of Chan and Vese who consider curve evolution methods based 
upon piece-wise constant variants of the Mumford-Shah functional 
in [2] and who have independently and contemporaneously devel- 
oped ideas very similar to those presented in this paper.' 

The active contour model inherits the attractive ability of the 
Mumford-Shah technique to generate, in a coupled manner, a seg- 
mentation and a smooth reconstruction of the image. Our model 
can also automatically segment images with multiple region types 
(perhaps each with different mean intensities) without knowing a 
priori how many distinct regions are present in the image. 

In the next part of this paper, we introduce a spatially vary- 
ing penalty into the data fidelity term, allowing us to treat images 
in which the quality of the measurements vary depending upon 
pixel location. In particular, we are able to treat, as a limiting 
case, images containing sets of pixels without measurements. By 
applying this missing data technique in a structured manner, we 
are able to develop a novel, unified framework for image mag- 
nification, segmentation, and smoothing. This technique consti- 
tutes a more global approach to magnification when compared to 
more traditional bilinear or bicubic interpolation schemes, while 
still maintaining sharp transitions along region boundaries. Fur- 
thermore, the arclength penalty prevents the appearance of blocky 
object boundaries that arise in replication-based schemes. 

2. AN ESTIMATION-THEORETIC APPROACH TO 
CURVE EVOLUTION FOR THE MUMFORD-SHAH 

PROBLEM 

The point of reference for this paper is the Mumford-Shah func- 
tional 

in which g denotes the data, f denotes a piecewise-smooth ap- 
proximation of g, 6' denotes a smooth segmenting curve, and 52 
denotes the image domain [3]. The parameters a, 0, and y control 

'Chan and Vese recently posted a technical report in which they gener- 
alize their previous approach (see www.math.ucla.edu/applied/cam/). 
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2.1. Optimal image estimation and boundary-value stochastic 
processes 

For any arbitrary closed curve in the image domain, R is parti- 
tioned into R and R", corresponding to the image domain inside 
and outside the curve, respectively. Given such a 6, we wish to 
find estimates of f R  and fRC, the f in regions R and R" respec- 
tively, that minimizes 

+ @//(fRC - g)2 dA + a//IvfRCIz dA. ( 2 )  
RC RC 

The estimate f~ that minimizes (2) is also the solution to find- 
ing the estimate of a boundary-value stochastic process f R  on the 
domain R whose measurement equation is 

g = f R + V  

and whose prior probabilistic model is given by 

V f R  = w 

where v and w are independent white Gaussian random vectors 
with covariances i I  and $1, respectively. The linear estimation 
of this boundary-value stochastic process can be solved by the 
method of complementary models [I]. Using this method, we de- 
rive ?R as the solution to the following: 

f R  - -v"f, = g on R ff 

P 
- = o  on C a h  
a# 

where fl denotes'the outyard unit normal of the curve c'. In a 
similar fashion, we derive f R c  as the solution to the following: 

on R" a 
#RRC - - v"f,C = g 

P 

Conjugate gradients (CG) method is used to solve the above PDE's. 

2.2. Gradient descent equation of the Mumford-Shah func- 
tional 

With the ability to calculate f~ and #RC for any given 6, we now 
wish to derive a 5urve evolution for that minimizes (1). That is, 
as a function of C,  we wish to find Ct that minimizes 

EfR,iRc (6) = P//(fR - g)' + a / / l v fRIZ  6% 

R R 

+ +. 
c 

(3)  

The curve evolution that minimizes (3) is derived as 

= ( IvfRC12 - l v f R l z )  fl 

where IE denotes the signed curvature of e. This flow is imple- 
mented via the level set method [4]. 

3. IMPLEMENTATION 

The algorithm described in the previous section requires solving 
two PDE's at every evolution step of the curve making it compu- 
tationally expensive and impractical. We propose an approximate 
gradient descent approach to calculate f ~ ,  f ~ c ,  and 6 to allevi- 
ate some of the computational burdens. This approach consists of 
alternating between these two steps: 

0 Fix f~ and ~ R C ,  and take several gradient descent curve evo- 
lution steps to move the curve e. 

0 Fix 6, and perform just a few iterations of the CG procedure- 
without taking it to convergence-to obtain a rough estimate 
Of f R  and fRc .  

Only a rough estimate of f R  and f R c  is required to direct the curve 
to move in the descent direction. The idef is to make the algorithm 
faster by reducing the number of times f R  and fRC are calculated 
and also the amount of time required to calculate each of them. CG 
procedure is carried to convergence in the last iteration to obtain 
an accurate estimate of f R  and fRC . 

Figure 1 illustrates the performance of this implementation 
of our model by using a noisy image of two Star Wars charac- 
ters standing in a spatially varying background. The segmentation 
clearly delineated the two Star Wars characters. The reconstruction 
of the image accurately captured the spatially varying background 
and preserved the structures within each Star Wars character. Ob- 
viously, this is not possible with lower dimensional models. 

4. MISSING DATA APPLICATIONS 

So far, we have focused on developing our algorithm for the partic- 
ular context in which the Mumford-Shah functional was originally 
designed, namely simultaneous image segmentation and denois- 
ing. However, the range of applications of our algorithm is much 
richer. In this section, we extend the approach of previous sec- 
tion to solve missing data problems by generalizing the original 
Mumford-Shah functional. 

4.1. Segmentation, denoising, and interpolation of images with 
missing data 

Our model handles missing data through the parameter 0. In the 
standard Mumford-Shah formulation (l) ,  ,B is a constant scalar pa- 
rameter reflecting our confidence in the measurements. To accom- 
modate applications in which the data quality is spatially varying 
and even in the limiting such case in which there are missing pixel 
measurements distributed arbitrarily through the image domain, 
we replace the constant parameter by a spatially varying func- 
tion whose value at each pixel is inversely proportional to the 
variance of the measured noise at that pixel. For example, in the 
situation where the data at pixel (zo, yo) is missing, we consider 
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(a) (b) (c) (d) (4 
Fig. 1. Noisy image of Star Wars characters Qui-Gon Jinn and Jar Jar Binks in the Tatooine Desert. 

the variance of the data at that pixel as being infinite and accord- 
ingly set P(z,, yo) = 0. By introducing this spatially varying P, 
equation ( I )  becomes: 

E(f, 6) = //~(f - g ) 2  & + a//lvf12 & + 7{ds. (4) 

Our algorithm can also be used to segment and reconstruct 
images with isolated pixels of missing data distributed arbitrarily 
throughout the image. This ability is illustrated in Figure 3 where 
a forward-looking infrared (FLIR) image of three tanks is shown. 
The missing data in the FLIR image are due to intensity saturated 
and defective pixels of the infrared sensor. Using our method, we 
are able to segment out the tanks and also provide a denoised and 
complete reconstruction of the image. 

n n \ C  e 
The gradient flow that minimizes (4) is given by 

where the optimal estimates f~ and f ~ =  of (5) satisfy 

P i R  - (Y v 2 i R  Pg on R 

and 

on C. 8fRC - = o  a d  
Over each region of missing data D, the estimation equation 

reduces to the Laplace equation with the same boundary condition: 

V’iD = 0 on D 

As solutions to the Laplace equation, the estimates obtained over 
any such missing data regions not containing part of c‘ take the 
form of harmonic functions. As such, we can infer much about 
the smooth nature of these interpolated estimates as they are sub- 
ject to both a maximum (and minimum) principle as well as the 
mean value property. However if the curve 6 intersects D, no such 
smoothing occurs across this boundary, allowing interpolation to 
be guided by the segmentation defined by 6. To illustrate this, we 
show in Figure 2(a) a synthetic image of the US with regions of 
missing data. The synthetic image is made in an attempt to sim- 
ulate a satellite picture of the US with regions of incomplete data 
as a result of obscuration by cloud coverings. The final curve es- 
timate is depicted in Figure 2(d), and the denoise and interpolated 
reconstruction is shown in Figure 2(e). 

4.2. Segmentation-based image magnification 

Image magnificatioircapability is weaved into the Mumford-Shah 
active contour model by considering the image magnification prob- 
lem as a very structured case of the missing data problem. Specif- 
ically, consider a new grid with three times as many pixels in each 
direction and assign the value of the original image to the “cen- 
ter” pixel in each 3 x 3  block on the grid and treat the remaining 
pixels as missing data points. From an estimation-theoretic stand- 
point, we can view these “center” pixels as sparse measurements 
on a much larger image domain. We then employ our general- 
ized Mumford-Shah curve evolution procedure to interpolate to 
this finer grid, using the curve evolution portion of this procedure 
to partition the domain of the magnified image into different homo- 
geneous subregions so as to provide smooth interpolations where 
appropriate without blurring across regions of high contrast. 

In Figure 4(a), we show a 160x 160 noisy black-and-white 
photograph of 5 burning birthday candles, each of differing in- 
tensity. We show in Figure 4(b) the 480x480 magnified image 
obtained by first magnifying the original noisy image using zero- 
order hold then smoothing it isotropically. Notice the magnified 
image is still noisy because the noise components within the origi- 
nal image have been exaggerated by the zero-order interpolation 
scheme. Figure 4(c) shows the 480x480 magnified image ob- 
tained by first isotropically smoothing the original noisy image 
then magnifying it using zero-order hold. This image is blurry 
because the edges of the image were destroyed during the initial 
smoothing step. We show the magnification results based on our 
approach in Figure 4(d). 

5. CONCLUSION 

We have described a novel active contour model which brings to- 
gether the theories of curve evolution, boundary-value stochastic 
processes, and the Mumford-Shah functional. This model is able 
to simultaneous segment and smooth images in a single frame- 
work and also able to handle problems with missing data. In ad- 
dition, by extending this model to a segmentation-based approach 
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(a) (b) (c) (d) (e) 
Fig. 2. Synthetic image with regions of missing data. Missing measurement data points are shown as white pixels in (a). 

(4 (b) (4 (d) (e) 
Fig. 3. FLIR image of M2, T62, and M60 tanks. White pixels in (a )  denote locations with missing data. 

(4 (b) (c) (d) 
Fig. 4. Three-fold magnification of a photograph of birthday candles. 

for image magnification, we obtain a magnification technique that 
is more global, is much less susceptible to blurring or blockiness 
artifacts as compared to other more traditional techniques, and has 
the additional attractive denoising capability. In [6], we describe 
a hierarchical implementation of this model which leads to a fast 
and efficient algorithm capable of dealing with important image 
features such as triple points. 
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