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ABSTRACT

The focus of this work is on using texture information for search-
ing, browsing and retrieving images from a large database. In the
wavelet approaches, texture is characterized by its energy distri-
bution in the decomposed subbands. However it is unclear on how
to define similarity functions on extracted features; usually simple
norm-based distances together with heuristic normalization are
employed. In this paper, we develop a novel wavelet-based texture
retrieval method that is based on the modeling of the marginal dis-
tribution of wavelet coefficients using generalized Gaussian den-
sity (GGD) and a closed form Kullback-Leibler distance between
GGD’s. The proposed method provides greater accuracy and flexi-
bility in capturing texture information while its simplified form has
close resemblance with existing methods. Experimental results in-
dicate that the new method significantly improves retrieval rates,
e.g. from 65% to 77%, against traditional approaches while it has
comparable levels of computational complexity.

1. INTRODUCTION

Digital image and video libraries are becoming more widely used
as more visual information is put in digital form as well as on-line.
To improve human access, however, there must be an effective and
precise method for users to search, browse, and interact with these
collections and do so in a timely manner.

Typically in a content-based image retrieval (CBIR) system,
there are two major tasks. The first one is Feature Extraction (FE),
where a set of features — called image signatures, is generated to
accurately represent the content of each image in the database. A
signature is much smaller in size than the original image, typically
on the order of hundreds of elements (rather than millions). The
second task is Similarity Measurement (SM), where some sort of
similarity functions between the query image and each image in
the database using their signatures are computed so that the top NV
matched images can be retrieved.

For the texture retrieval application, some of the most popular
feature extraction methods are filtering or wavelet-like approaches
{2, 8, 6, 10, 71. Essentially, those methods measure energy (possi-
ble weighted) at the output of filter banks as extracted features for
texture discrimination. The basic assumption of these approaches
is that the energy distribution in the frequency domain identifies
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a texture. However it remains unclear on how to define similarity
measures on extracted features. Many current similarity functions,
typically Euclidean-like distances, have little justification in this
context.

In a statistical framework, we can view the task of search-
ing for the top IV similar images to a given query image from
a database of total M images (N <« M) as a selection from
multiple hypothesis. Here each candidate image in the database
I;,i = 1,2,... , M is assigned with an hypothesis H;. The goal
is to select among the M possible hypotheses the IV best ones
(with a ranking order) that describe the data from the query image.
In this setting, by jointly considering the two probiems of FE and .
SM while keeping in mind the complexity constraint of CBIR ap-
plications, we can show [4] that the optimum maximum likelihood
(ML) selection rule can be asymptotically realized by:

Feature Extraction: Given the data from each image, extracted
features are probability model parameters estimated from
the data using a ML estimator.

Similarity Measurement: To select the top N matches to a query
image, the database is ranked based on the Kullback-
Leibler distances between the query model and models of
each candidate images.

The Kullback Leibler distance (KLD) or relative entropy be-

tween two densities f and g is defined as [3]:

D(fllg) = [ f1og § M

Note that the KLD is not symmetric. For our case, the den-
sity f represents the query image where g represents a candidate
image.

In this paper, we will demonstrate the application of the sta-
tistical framework in the wavelet-based texture retrieval problem.
The statistical approach fits nicely into this problem since a texture
image is often regarded as a realization of an underlying stochastic
process.

2. WAVELET-BASED TEXTURE FEATURES

Using the assumption that the energy distribution in frequency do-
main identifies texture, traditional approaches computed energies
of wavelet subband as texture features. Commonly, £ and £2
norms are used as measures.'

!'This is an abuse of terminology since strictly speaking £ norm is not
an energy function.



On the other harid, statistical approaches treat texture analysis
as a probability inference problem. In this work we simply char-
acterize texture images via marginal distributions of their wavelet
subband coefficients. This is supported by psychological research
on human texture perception which suggests that two homoge-
neous textures are often difficult to discriminate if they produce
similar marginal distributions of responses from a bank of filters
(1l

Experiments show that a good probability density function
(PDF) approximation for the marginal density of coefficients at
a particular subband produced by various type of wavelet trans-
forms may be achieved by adaptively varying two parameters of
the generalized Gaussian density (GGD) [5, 10], which is defined
as:
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where T'(.) is the Gamma function, ie. I'(z) =
i et 1dt, 2> 0.

Here a models the width of the PDF peak (variance), while 3
is inversely proportional with the decreasing rate of the peak. The
GGD model contains the Gaussian and Laplacian PDF’s as special
cases, using 3 = 2 and 3 = 1, respectively.

Figure 1 shows a typical example of histogram of wavelet sub-
band coefficients together with a plot of the fitted GGD using the
ML estimator that is described in [4]. The fits are generally quite
good. Thus it can be seen that the marginal distribution parameters
provide a more precise representation of texture information than
the wavelet subband energies. But more importantly, the statisti-
cal modeling leads to a more natural way of defining the similarity
measurement between images.
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Fig. 1. Example of wavelet subband coefficient histogram fitted
with a GGD. The estimated parameters are: & = 0.46 and 5 =
1.52.

3. SIMILARITY MEASUREMENT ON WAVELET
SUBBANDS

3.1. Kullback-Leibler Distance between GGD’s

Given the GGD model, the PDF of wavelet coefficients at a sub-
band can be completely specified via two parameters « and 3.
Substitute (2) into (1) and after some manipulations we obtain the

following closed form for the Kullback-Leibler distance (KLD)
between two GGD’s as:

D(p(; 0, B1)lIp(.; a2, B2)) = log ("—‘“—2511@)

BeanT(1/51)
a\? (B +1)/8) _ 1
+ (az) r(1/B) B @

Therefore the similarity measurement between two wavelet
subbands can be computed very effectively using the model pa-
rameters. Furthermore, using the chain rule of KLD [3] with the
reasonable assumption that wavelet coefficients in different sub-
bands are independent, the overall similarity distance between two
images is the sum of KLD’s given in (3) between corresponding
pairs of subbands. That is if we denote an Y and ﬂi(’ ) as the ex-
tracted texture features from the wavelet subband j of the image
Z; then the overall distance between two images 7; and 7, (where
7, is the query image) is:

D(Ty,T;) = Y D(p(; 0, )Ip(5 08, B57)). @
J

3.2. Relation to Energy-based Methods in the Laplacian Case

Consider the case when the parameter (3 is fixed and equal to 1.
That is we are modeling the wavelet coefficients using the Lapla-
cian distribution. The extracted feature from wavelet coefficients
x = (@1, 2,... ,xL) at a particular subband using the ML esti-
mator is:

L
N ;=1 11
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This is the same as the £'-norm features of wavelet coeffi-
cients.

From (3), the KLD between two Laplacian distributions is:

Qz
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This is a convex function of o/ and is minimum when
az /a1 = 1. Therefore in term of selecting the most similar im-
ages, we are only interested in the situation when the ratio oz /a1
is near the vicinity of 1. Using first-order Taylor approximation of
log z around 1, log z =~ = —1 when = = 1, we have,
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Summing those distances across wavelet subbands we obtain
the overall distance between two images 7; and 73 as
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This distance is essentially the same as the popular weighted
Euclidean distance between extracted features aﬁj ) where “global”
normalization factors w) = var{a{’ : i =1,2,...,M} are
replaced by “local” normalization factors w(’ ) = a(’ ) a(J )

So we just demonstrated that the genera] statlsnca] framework
with GGD’s on the wavelet coefficients can be simplified to closely
resemble and thus provide a justification for the weighted Eu-
clidean distance between £-energies of wavelet subbands. This
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is an interesting fact since the two approaches are based on to-
tally different assumptions. The former one relies on an underly-
ing stochastic process of the texture image while the later one is
based on the energy distribution in the frequency domain.

4. EXPERIMENTAL RESULTS

We used 40 textures obtained from the MIT Vision Texture (Vis-
Tex) database [9). These are real world 512 x 512 images from
different natural scenes. Only gray-scale levels of the images
(computed from the luminance component) were used in the ex-
periments. Since we define similar textures as subimages from a
single original one, we selected texture images whose visual prop-
erties do not change too much over the image. The names of those
selected textures can be found in Table 2.

Each of the 512 x 512 images was divided into sixteen 128
x 128 non-overlapping subimages, thus creating a test database of
640 texture images. Furthermore, to eliminate the effect of com-
mon range in the gray level of subimages from a same original im-
age and to make the retrieval task less biased, each subimage was
individually normalized to zero mean and unit variance before the
processing.

4.1. Computational Complexity

The proposed texture retrieval system has been implemented in
the Matlab environment. The Feature Extraction (FE) step in-
volves talking a wavelet transform of the input image and estimat-
ing the GGD model parameters at each subband using ML estima-
tor. It was found that roughly the same amount of time is spent on
wavelet transformation and parameter estimation, giving a total of
less than 1 second of CPU time on a Sun’s Ultra 5 workstation for
extracting features from one image.

Thank to the closed form of distance in (3), the Similarity
Measurement (SM) between two images involves simple compu-
tation using a small number of model parameters. Optimized im-
plementation using lookup tables yields comparable computation
time as normalized Euclidean distance.

4.2. Retrieval Effectiveness

In retrieval experiments, a simulated query image is any one of
640 images in our database. The relevant images for each query
are defined as the other 15 subimages from the same original Vis-
Tex image. Following [6] we evaluated the performance in terms
of the average rate of retrieving relevant images as a function of
the number of top retrieved images. The new approach (which
uses the combination of GGD & KLD) is compared with the tra-
ditional methods using the energy-based features in the wavelet
domain (both £! and £? features) together with normalized Eu-
clidean distance as the similarity measurement. We also reported
the results when the normalized Euclidean distance (ED) was used
on GGD’s model parameters, which is similar to the method used
in [10]. Note that all compared methods yield the same number of
features per images (2 features per wavelet subband). The em-
ployed wavelet transforms are the traditional wavelet pyramids
(DWT) and the non-subsampled discrete wavelet frames (DWF)
using the 8-tap Daubechies orthogonal wavelets. Table 1 sum-
maries the comparison in performance in average percentages of
retrieving relevant images in the top 15 matches.
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Type of decomposition Methods
LS+ GGD & | GGD &
KLD ED
1 scale (6 features)

DWT 55.47 66.36 57.47
DWF 56.92 67.09 61.34

2 scales (12 features)
DWT 62.82 73.35 65.87
DWF 63.32 74.01 69.78

3 scales (18 features)
DWT 64.83 76.57 61.18
DWF 68.48 78.12 7113

Table 1. Average retrieval rate (%) in the top 15 matches using
pyramid wavelet transform (DWT) and wavelet frames (DWF).

The first observation is that the statistical approach (GGD
& KLD) always outperforms all other tested traditional methods.
This is consistent with our expectation since the GGD parameters
are more expressive in characterizing textures than the energy-
based ones. Furthermore, the inferior results of the GGD & ED
method (where the same features with the statistical method were
used but similarity measurement uses normalized Euclidean dis-
tance) shows that good performance in retrieval comes not just
from a good set of extracted features but also together with a suit-
able similarity measurement. Hence this supports our approach of
considering the two problems FE and SM jointly.

Table 2 details the comparison between the L' 4+ L? and GGD
& KLD methods with 3 levels of pyramid wavelet decomposition.
Again we can see that the new method consistently gives superior
performance for almost all texture classes, especially for the ones
that have structural patterns.

Figure 2 shows a graph illustrating this comparison in re-
trieval performances as functions of number of top matches con-
sidered. As can be seen, it requires almost double the number of
retrieved images in the traditional method in comparison with the
new method in order to retrieve the same number of relevant im-
ages.

Average retrieval rate (%)

R e PTE) B
— Statistical method (GGD A KLD)

30 80

40 50 60 70
Number of retrieved images considered

Fig. 2. Retrieval performance according to the number of top
matches considered.

Finally, Figure 3 shows examples of retrieval results using the
two compared methods. In this case the energy-based features with
normalized Euclidean distance has poor performance in contrast
with the new statistical method.



Texture Methods Texture Methods
Class I i Class I I
Bark0 4648 | 53.12 Food8 82.03 97.66
Bark6 39.06 | 50.39 Grassl 58.98 69.14
Bark8 60.16 | 73.44 || Leaves8 63.67 68.36
Bark9 49.61 | 61.33 Leaves10 | 22.27 34.38
Brickl 62.50 | 71.88 Leavesll | 58.98 71.48
Brick4 40.23 | 66.41 Leavesl2 | 68.75 74.61
Brick5 58.59 | 83.20 || Leavesl6 | 51.56 84.77
Buildings9 | 7148 | 86.72 Metal0 73.83 73.05
FabricO 69.92 | 87.50 || Metal2 100.00 | 100.00
Fabric4 66.41 | 64.84 Misc2 57.42 78.12
Fabric7 98.44 | 100.00 [| Sand0 72.27 80.08
Fabric9 7031 | 87.89 Stonel 50.00 53.52
Fabricl1 66.41 | 81.25 Stone4 74.22 79.30
Fabrici4 89.06 | 100.00 || TerrainlQ | 43.75 52.73
Fabricl5 71.88 | 94.53 Tilel 33.20 53.12
Fabricl7 94.92 | 90.23 Tiled 80.47 99.22
Fabric18 97.66 | 98.83 Tile7 80.86 | 100.00
Flowers5 36.33 | 58.20 Water5 86.72 96.48
Food0 58.59 | 83.59 Woodl 21.88 35.55
Food5 8359 | 8945 Wood2 80.86 78.52

Table 2. Average retrieval rates for individual texture class using
wavelet pyramid transform with 3 decomposition levels. Here I
denotes the £' + £2 method where 11 denotes the GGD & KLD
method.

5. CONCLUSION

The statistical framework has been applied successfully in the
wavelet-based texture retrieval application where simple models
on wavelet coefficients that can capture important texture informa-
tion exist. This results in a new texture similarity measurement in
wavelet domain which has a sound theoretical justification with no
need for normalization steps. Furthermore, by restricting to sim-
pler models, the new similarity distance becomes closely related
to the popular variance-normalized Euclidean distance. Hence the
statistical approach can be used as a common framework for other
existing methods. Experimental results on 640 texture images
of 40 classes from the VisTex collection indicated that the new
method has a significant improvement in retrieval rate, e.g. from
65% to 77%, over the traditional approaches using both the pyra-
mid wavelet transform and wavelet frames while requiring compa-
rable computational time.
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