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ABSTRACT

Two algorithms are presented for the detection of gradual tran-
sitions in video sequences. The first is a dissolve detection al-
gorithm utilizing certain properties of a dissolve’s trajectory in
image-space. The second is an algorithm to detect a wide vari-
ety of wipes based on image histogram characteristics during such
transitions. Both algorithms operate in the compressed domain,
requiring only partial decoding of the compressed video stream.
Experiments show the algorithms perform well in detecting a wide
variety of gradual transitions, and at a significant reduction in com-
putation time when compared with full-frame methods.

1. INTRODUCTION

Content analysis of digital video is of central importance in the cre-
ation of indexing, browsing, and searching mechanisms for video
databases. An essential first step is the segmentation of new streams
via production cues such as scene and shot boundaries. As most
of this video will be in compressed form, and computational ex-
pense is an important consideration, processing of the video in the
compressed domain is desirable.

The detection of abrupt transitions (“cuts”) between shots has
been extensively studied in both the compressed and uncompressed
domains. Gradual transitions, which are more likely to mark scene
boundaries than are cuts, pose a much more difficult problem.
Such transitions either affect all pixels simultaneously (a dissolve),
or abruptly affect some evolving subset of the pixels (a wipe).
Much work has been done on dissolve detection (of which fades
are special cases), particularly with the use of reduced-resolution
frames and motion vectors gathered directly from the compressed
stream [1]–[7].

The detection of the latter class of gradual transitions, col-
lectively known as “wipes”, has not been as extensively studied.
Wipe transitions are characterized by the slow sliding in or uncov-
ering of an image from a new shot, while simultaneously covering
up or sliding out the old shot. More “artistic” wipes can be cre-
ated by blurring or drop-shadowing the edge, or by adding further
computer-generated effects during the transition; Figure 1 shows
some examples. Wipes are often used in television news and sports
coverage to denote stories or replays, as well as to set off scenes in
movies (theStar Warsseries, for example, uses wipes extensively).
One application for the detection of wipes is the extraction of in-
stant replays in sports video for automated summarization.

This work was supported in part by a New Jersey State R&D Excel-
lence Grant, NSF Grant MIP-9408462, and an Intel Technology for Edu-
cation 2000 Grant.

One common method for wipe detection involves counting the
number of pixels belonging to edges within the image; this statistic
will monotonically change during a transition, from the old shot’s
quantity to the new shot’s [8, 9]. This generally must be performed
on uncompressed video, and is computationally expensive. In the
compressed domain, methods have been proposed which analyze a
projection or subset of the DC DCT coefficients, looking for pro-
gressions of abrupt pixel changes [10, 11]. A method has been
proposed by which the statistical characteristics of wipe sequences
are detected [12]. Most recently, an algorithm was proposed us-
ing the Hough transform on spatially-reduced frames to detect and
characterize certain types of wipes [13]. With the prevalence of
computer-generated wipes, sharp boundary assumptions and sim-
ple one-directional wipe models are likely to fail on modern video;
what is needed is a more general method, independent of the di-
rection or style of wipe, and unaffected by any reasonable amount
of producer-added effects (blurring, page-turning, shadows, etc.).

This paper begins a brief motivation for, and explanation of,
the compressed-domain techniques used throughout; these are pre-
sented in Section 2. Section 3 describes a fast dissolve detection
algorithm which eliminates some restrictions imposed by available
dissolve detectors. A general method of wipe detection, which cir-
cumvents many of the limitations imposed by current algorithms,
is presented in Section 4. Experimental results and conclusions are
described in Sections 5 and 6, respectively.

2. COMPRESSED DOMAIN PROCESSING

One natural technique of compressed-domain analysis is reduced-
resolution processing: using a subset of the block DCT coefficients
to reconstruct thumbnail-sized images1. The effects of MPEG
compression, video noise, and camera or object motion are far
less significant at such reduced resolutions, facilitating analysis.
Of particular interest is the construction of “DC frames,” which
are comprised of the lowest-order DCT coefficients of each block
(and are therefore one sixty-fourth the size of the full frames). For
intercoded compressed frames, the DC sequence can be easily es-
timated using available motion vectors [4]. Similar methods can
be used to construct DC+2AC frames, which are formed from the
DC and two lowest-order AC coefficients of each block.

Displaced frame differences (“DFD’s”), which are the pixel-
by-pixel differences between frames after any motion compensa-
tion, can be computed for P frames without full decompression.

1While we will concentrate on MPEG-1 video, the techniques pre-
sented apply equally well to other block/transform-based compression
schemes.
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Fig. 1. Sample wipe sequences from network television, showing
the wide variation possible.

In particular, DC DFD’s require no computation at all, as they are
just the lowest-order DCT coefficients of the residue frames.

3. DISSOLVE DETECTION

A dissolve or fade is a time-varying superposition of two video
streams. Letfk(x, y) denote the value of pixel(x, y) in framek
of sequencef . A dissolve from sequenceg to sequenceh, lasting
from framem to framen, can therefore be described by

fk(x, y) = αkhk(x, y) + (1 − αk) gk(x, y) (1)

where the sequenceαk increases fromαm = 0 at the beginning
of the dissolve toαn = 1 at the end. It is often assumed that the
sequenceαk increases linearly, but this is not necessarily the case;
particularly artistic dissolves may contain a pause, a long lead-in
time, or some other non-linearity inαk.

For the moment, we assume there is negligible motion in the
sequencesg andh. Consider the trajectories formed byfb − fa

andfd − fc, wherem < a < b < n andm < c < d < n, andfk

is the vector formed by all the DC pixels of framek. Substituting
the model in (1) yields

fd − fc = (αd − αc) (αb − αa)−1 [fb − fa] (2)

during a dissolve. Asαk is an increasing sequence, we know
(αd − αc) (αb − αa)−1 > 0. This condition is equivalent to the
statement that, during a dissolve, the correlation,ρ, between any
two trajectory vectors is1. If one considers each vectorfk as be-
ing in a frame-space, then the video’s trajectory in this space will
be a straight line during a dissolve, as shown in Figure 2. Natu-
ral, non-dissolve motion in a stream generally does not have this
characteristic.

In order to check this condition, we are faced with four con-
cerns: limited memory (we cannot store all the frames), limited
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Fig. 2. Three-dimensional representation of a video sequencefk

in frame-space during a dissolve.

computation time, noa priori knowledge of the start or end of
the dissolve, and the fact that there may be some object or cam-
era motion in the frame. Analysis of three frames at a time offers
a good compromise among these considerations. Using frames
k − l, k, andk + l, we can compute two length-l frame differ-
ences:dl

k = fk − fk−l anddl
k+l = fk+l − fk. The correlation of

frame-space vectorsdl
k anddl

k+l, as a function ofk, is then

ρk =

〈
dl

k+l, d
l
k

〉√∥∥dl
k+l

∥∥2 ∥∥dl
k

∥∥2
. (3)

A ‘straight’ triplet of frames is declared if the correlation is greater
than a thresholdTcorr. In order to declare a dissolve, we require
that the threshold be met for every triplet in some sequence of
frames, say fromm to n. We also require that

‖fn − fm‖ ≥ Tdist. (4)

The length condition is necessary because small changes (eg, in
frame brightness) can lead to the correlation condition being met
for an isolated triplet or two. Both threshold tests can be done
sequentially, with no knowledge of future frames beyondk + l. If
we use DFD’s, instead of the true frame differences, simple object
or camera motion can be compensated for; a plot of this DFD-
based correlation sequence is shown in Figure 3.

Values forTcorr andTdist should be set based on the desired
false alarm rate or detection accuracy. As the values of the frame-
space correlations can depend on non content-related factors such
as frame size, video noise, and compression artifacts, the mean
value of the pastN ρk values is subtracted before theTcorr com-
parison is made. Specific experimental results are presented in
Section 5.

4. WIPE DETECTION

As in the dissolve case, assume we have a wipe from framem to
framen, a transition between sequenceg and sequenceh. While
simple wipes can be modeled with frame-space equations, com-
plex computer-generated wipes do not admit a single, general model.
Instead, we focus on which pixels belong tog and which toh in
each frame. The wipe is then characterized by an indicator se-
quenceIk(x, y), which is 0 for all x andy at the beginning of
the wipe, and1 for all at the end.‖Ik‖ will increase from0 to
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Fig. 3. The sequenceρk for a segment of documentary video,
using DFD’s andl = 3; dissolves occur during frames 115–140
and 492–516.

the number of pixels in the (reduced-resolution) image, ask goes
from m to n.

One representation of a video sequence that allows us to exam-
ine the‖Ik‖ sequence, without imposing a specific wipe pattern,
is the histogram. We denote thep-th bin of framefk ’s histogram
asFk(p); during a wipe, we have

Fk(p) =

( ‖Ik‖+ EG,k(p)

N

)
Gk(p)

+

(
1− ‖Ik‖+ EH,k(p)

N

)
Hk(p), (5)

whereEG,k(p) andEH,k(p) are error terms resulting from the
spatial nonuniformity of the histograms ofg andh, respectively.
Note that this histogram-based wipe model has the same form as
the frame-space model (1) for a dissolve! If the values ofEG,k

andEH,k are small and fairly constant ink, it also meets the con-
ditions we imposed on the coefficientsαk from the dissolve case.
Specifically, the quantity

βk =
‖Ik‖+ EG,k(p)

N
(6)

will be increasing ink from 0 to 1, and

1− ‖Ik‖+ EH,k(p)

N
≈ 1− βk. (7)

Such a parallel immediately suggests a wipe detection algo-
rithm. As in the dissolve case, the correlation between any two his-
togram difference vectors (Fb−Fa andFd −Fc) will be 1 during
an ideal wipe. Moreover, a wipe will appear as a straight line in a
histogram-space, where each dimension corresponds to one bin of
the histogram. (This linearity is independent of the time progres-
sion of the wipe.) In the same manner as the dissolve case, we de-
fine thel-frame histogram differenceDl

k(p) = Fk(p)− Fk−l(p).
We compute the correlation sequentially, from pairs of his-

togram differences:

ρhist,k =

〈
Dl

k+l, D
l
k

〉√∥∥Dl
k+l

∥∥2 ∥∥Dl
k

∥∥2
. (8)

This value is compared to a threshold, and the value of (4) is com-
puted to determine the length of the candidate wipe; a wipe transi-
tion is declared if both thresholds are met.

Equation (5) makes a computational assumption: the number
of pixels in any histogram must be an integer, yet the coefficient
βk may be such that the equation requires a non-integral number
of pixels in a particular bin. This quantization error, if significant,
can reduce the correlation among the adjacent pair of vectors in a
triplet. The error can be reduced by using fewer histogram bins,
as well as by increasing the spatial resolution at which one oper-
ates. For this reason, we chose to use on the order of 2 to 4 his-
togram bins per color dimension, and perform the histograms on
DC+2AC frames. While characterizing these data-dependent er-
rors and their effects onρhist remain open problems, their effects
onρhist can be reduced by low-pass filtering the resulting correla-
tion sequence (the assumption here being that the errors inρhist,k

are approximately independent ink). Low-pass filtering also helps
alleviate the time-varying histogram distortions that MPEG com-
pression and video noise can introduce. The quantization issues
can also be ameliorated by using the inner product, instead of the
correlation, between histogram vectors; this benefit comes at the
cost of additional false alarms in non-wipe segments with large
histogram changes.

One issue has not yet been addressed: can natural motion in
video cause a linear trajectory in histogram-space? Pathologically-
structured object motion into or out of a frame can cause a straight
line in the histogram-space, as can panning the camera if the image
contents and histograms change radically during the pan. Exper-
imentally, the number of false alarms attributed to object motion
has been shown to be fairly small in natural video, provided the
image histogram does not change radically during the movement.
False detections due to panning can only be eliminated at the ex-
pense of missing “push” type wipes (which are arguably a type of
panning). This can be done by computing the temporal variance
of each macroblock’s motion vectors—low variance corresponds
to constant motion in some direction, through time.

5. EXPERIMENTAL RESULTS

Each algorithm was tested with “natural” television or film footage,
digitized from VHS tape sources with a hardware MPEG-1 en-
coder. The resulting video quality is hardly perfect, making for
a good workout of each transition detector. Each test stream was
digitized at a resolution of352×240 and a frame rate of 29.97 fps.
The test sets consisted of news video from different networks, doc-
umentary footage, and other material. All computation was per-
formed on a 350 MHz Sun workstation.

5.1. Dissolve Detection

A thirteen minute set of video was used as a “training” set, on
which parameter values were selected. The training set’s 23700
frames contained 59 dissolves, 115 cuts, and 6 wipes, as well as
some significant object and camera motion. Most of the dissolves
were clearly visible, but three were between images so similar that
a human viewer might not notice the transition at first glance. The
dissolves ranged in length from 12 to 65 frames, and a number of
the transitions contained motion of some sort.

Testing yielded good results withTcorr = 0.15 (after the
mean of the past 125 values was subtracted) andTdist = 83000.



With these values, 57 out of the 59 dissolves were properly de-
tected, with 9 false alarms (a rate of one per 2633 frames). Differ-
ent thresholds can be selected to yield different detection probabil-
ity / false alarm tradeoffs.

When run on a larger, 29 minute (52700 frame) test set, the
parameter values listed above yielded a detection rate of 132 out
of 156, with 43 false alarms. As this was not the training set for our
algorithm, these values are not optimal; adjusting the parameters
can give higher detection rates while maintaining this number of
false alarms. Further tweaking of the parameter values can also
yield much higher detection rates at the expense of greater false
alarm numbers; for instance, a 148/156 detection rate is possible
if we allow 49 false alarms. If necessary, further processing can
be done to cut the number of false alarms (for example, requiring
the frame space vectors have at least a certain L2 length during a
dissolve, or utilizing other statistical properties dissolve transitions
must have).

Including the overhead due to DC frame extraction, our algo-
rithm processed video at about 170 frames per second. In fact,
nearly 95% of the processing time is spent parsing the MPEG
stream and calculating the DC frames; once the DC frame is avail-
able, our algorithm takes only an additional 0.3 ms/frame on the
test machine. Speed in parsing could likely be improved through
better optimization of our partial MPEG decoder.

5.2. Wipe Detection

In testing the wipe algorithm, a broadcast video set of news and
sports was augmented by short clips with artificial wipes (between
TV news shots), created with Adobe Premiere 4.2.1. Forty test
clips, with varying parameters and styles, were created. The first
shot of each clip contains mild object motion, and the second shot
of each is a slow zoom; neither shot is motionless during the wipe.
The combined length was 42100 frames, or 23.5 minutes.

Sixty out of 62 wipes were detected, with 35 false alarms,
when using the parametersTcorr = 0.25 (after the running mean
was subtracted),Tdist = 61000, and 2 histogram bins per color
dimension (for a total of 8). The misses were mainly due to the
adjacent shots having very similar histograms: one example is a
wipe between two close-up views of a basketball play, having very
similar histograms; except for its white boundary, the transition
was barely visible to the eye. Most of the false alarms were due to
close-up panning during a tennis segment, where the histograms
changed wildly.

The wipe algorithm requires about 2.9 ms/frame of computa-
tion time; when added to the 18.1 ms/frame required to extract the
DC+2AC frames, the algorithm runs at a rate of nearly 48 frames
per second. If the dissolve algorithm is cascaded with the wipe
algorithm, the overall processing speed is 46 frames per second.

6. CONCLUSIONS

In this paper, we have presented a novel approach to the detec-
tion of gradual transitions in compressed video streams. The grad-
ual transitions are grouped into two categories: those that affect
affect every pixel simultaneously, but only by a small amount in
each frame, and those that affect the pixels in some sequence, each
pixel being changed abruptly. Dissolves and fades are members of
the former class, and an algorithm to detect their presence is pro-
posed based on their properties in a reduced-resolution, motion-
compensated, frame space. Wipes and related computer effects are

members of the latter class, and parallels are drawn with the dis-
solve case to develop a detection algorithm using histogram-space
properties. Both algorithms have very good detection performance
and run quickly enough to enable analysis of real-time streaming
video (with ample headroom to allow further processing). Each
could be further improved by additional pruning of false alarms,
as well as by more sophisticated adaptive threshold techniques. In
many applications, differentiating one type of wipe from another
can yield semantic information; such automated classification of
wipe types would be a useful future addition.
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