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Abstract 
The objective in defining feature space is to reduce the 
dimension of the original pattem space yet maintaining 
discriminatory power for  classijkation [l]. To meet this 
objective in the context of ear and face biometrics a novel 
force field transformation has been developed in which 
the image is treated as an array of Gaussian attractors 
that act as the source of a force field. The directional 
properties of the force field are exploited to automatically 
locate a small number of potential energy wells and 
channels that form the basis of a characteristic feature 
vector. Here, we generalise the analysis, and the stock of 
applications. 

1 Introduction 
In vision-based biometrics we aim to extract a 

compact description from an image which may 
subsequently be used to identify or confirm the identity of 
the owner [2]. Now in order to meet this objective we 
have developed an invertible linear transformation which 
we call the forcefield transform [ 3 ] .  Our primary concern 
has been automatic ear recognition [ 3 ] ;  we now extend 
our analysis and show that the transformation appears to 
have similar potential for automatic face recognition. 

The entire ear image is converted into a force field by 
pretending that each pixel exerts an isotropic force on all 
the other pixels that is proportional to pixel intensity and 
inversely proportional to the square of the distance. There 
is a potential energy surface associated with this force 
field, which in the case of an ear can be likened to a small 
mountain with a few peaks joined by ridges. We call 
these peaks potential energy wells and the ridges joining 
them potential energy channels. The directional property 
of the force field is exploited to automatically locate these 
potential wells and channels, which then form the basis of 
the ear's signature. 

An array of unit value exploratory mobile test pixels is 
arranged in a closed loop formation surrounding the target 
ear. Each test pixel is then allowed to follow the pull of 
the force field so that its trajectory forms a field line and it 
will continue moving until it reaches the center of a well 
where no force is exerted and no further movement is 
possible. Since the force field at a point is unique all field 

lines which arrive at a given point will follow the same 
path from that point onwards thus forming channels. This 
process is illustrated in Figure 3 where an elliptic array of 
50 test pixels is placed in the force field and iterated to 
produce the field lines shown in the center. The most 
striking example of the channel formation process is seen 
at the top of the ear where 14 field lines combine to form 
a channel which flows rightwards following the contour 
of the ear-rim to finally terminate in a well. The locations 
of the wells are extracted by simply noting the 
coordinates of the clusters of test pixels that eventually 
form. These locations are shown on the right, 
superimposed on force field magnitude. 

The structure of the force field as described by the 
field lines shows remarkable initialization invariance [ 3 ]  
in the sense that if the radius of the ellipse is altered or if 
its center is translated, the same channel and well 
description will result. Also if the image is scaled the 
force field structure scales with the image. We have also 
found that the process is very tolerant of noise, due to its 
inherent averaging. In this paper we generalise our earlier 
presentation to show more basic properties of the 
technique and how it can be applied to other pattern 
recognition problems. 

2 Force Field Approach 
The image is transformed by pretending that it consists 

of an array of N Gaussian attractors, which act as the 
source of a force field. Each pixel is considered to 
generate a spherically symmetrical force field so that the 
force Fi(rj) exerted on a pixel of unit intensity at the pixel 
location with position vector rj by any other pixel with 
position vector ri and pixel intensity P(rJ is given by 

The units of pixel intensity, force, and distance are 
arbitrary, as are the co-ordinates of the origin of the 
vector field. The total force F(rj) exerted on a pixel of unit 
intensity at the pixel location with position vector rj is the 
vector sum of all the forces due to the other pixels in the 
image and is given by, 
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N - 1  ~ - 1  [ ri -rj3] 
F(rj) = Fi(rj) = P(ri) (2 )  

i=O,# j i=O,# j Iri - rj I 
In order to calculate the force field for the entire 

image, this equation should be applied at every pixel 
position in the image. Since this procedure is quadratic in 
the number of pixels N, a more efficient approach is to 
exploit the speed of the Fast Fourier Transform by 
viewing the process as a convolution of the image with 
the field associated with a unit value test pixel. A nine- 
fold memory penalty is incurred since zero padding is 
required for anti-aliasing. However the reward is a 
computation complexity of order 9Mog(9N). 

Associated with the force field generated by each 
pixel there is a spherically symmetrical scalar potential 
energy field where Ei(rj) is the potential energy imparted 
to a pixel of unit intensity at the pixel location with 
position vector rj by the energy field of any other pixel 
with position vector ri and pixel intensity P(c), and is 
given by 

(3) 

The defining equation is simpler than the force field 
equation but the concept is less intuitive. If an 
exploratory unit test pixel is moved around in the force 
field generated by a given pixel, energy will be exchanged 
if the net effect is to change the distance of the test pixel 
from the given pixel. Thus the field consists of concentric 
rings of equal potential energy known as equipotentials. 
If the test pixel moves to a different location on the same 
equipotential ring, no energy is exchanged. If it moves to 
a different equipotential, an amount of energy will be 
exchanged equal to the difference in potential energy 
between the two rings. The potential energy function of a 
single isolated pixel looks like an inverted vortex as 
shown in Figure 1 

I 

Figure 1 Isolated pixel potential energy function 

Now to find the total potential energy at a particular 
pixel location in the image, the scalar sum is taken of the 
values of the overlapping potential energy functions of all 
the image pixels at that precise location and is given by 

This summation is then carried out at each pixel 
location to generate a potential energy surface, which is a 
smoothly varying surface due to the fact that the 
underlying inverted vortices have smooth surfaces. 

Figure 2 Potential energy surface for an ear 

3 Invertible Linear Transform 
In the appendix we show that the force field transform 

is a linear transformation and this is confirmed here by 
giving its matrix representation [4]. The form of the 
matrix is illustrated for a trivial 2 x 2 pixel image. It is 
easily verified that this represents the application of 
Equation 2 at each of the four pixel locations. This 
equation multiplies a column vector of pixel intensities 
(P i )  by a matrix of inverse square displacement vectors d, 
to give a column vector of forces (Fi). We have, 

ri -r .  0 dl0 dzo d30 P, 
'do, 0 dzl  d 3 ~  I:]= [ i] where d, = 
dm dl2 0 4 2  14 -rjl 
pm dl3 dz3 0 4 

This is a skew-symmetric matrix: the leading diagonal 
of zeros reflects the fact that no pixel attracts itself and 
the skew symmetry is accounted for by the fact that we 
are dealing with a fully connected network but with a pair 
of directed edges connecting every pair of nodes. 

There is a corresponding representation for the 
potential energy transformation since the vector force 
field and scalar potential energy fields are related by the 
fact that the force at a given point is equal to the additive 
inverse of the gradient of the potential energy surface at 
that point, 

F(r) = -grud(E(r))= -VE(r) (5 )  

Since the representation matrices are square it is of 
theoretical interest whether they are invertible or not. If 
they are invertible then the original image can be 
recovered for example from the potential energy surface. 
This implies that all the information in the original image 
is conserved by the transformation, which is an important 
result. In practice the representation matrices for images 
of even modest size are very large, for example a 10x10 
image has a matrix with 10,000 elements. However we 
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have tested the potential energy representation matrices 
for all square images up to 32x32 pixels and all non- 
square images up to 7x8 pixels and have found them to be 
invertible. These results suggest that the potential energy 
transform is indeed invertible for most image sizes and 
aspect ratios. 

Figure 3 Force field feature extraction for an ear 

Figure 4 Different descriptions for different ears 

Even if there are some particular combinations of aspect 
ratio and size that yield singular matrices, this should not 
detract from the overall conclusion that all of the image 
information is conserved by the transformation. 

In Figure 4 we show results of the same extraction 
process for different ears. Clearly the new transformation 
leads not only to a different channel description for each 
ear, but also to different wells 

4 Force Field Faces 
Here we demonstrate that the technique may also be 

employed in face recognition. We find generally that 
there are fewer potential wells in the results for faces 
when compared with those for ears, so that greater 
emphasis and reliance must be placed on potential 

~ 

Figure 5 Force field feature extraction applied to faces 

channel descriptions. As shown in Figure 5 the potential 
channels are quite unique for each of the four faces. 
Notice that only one potential well is located for the last 
face in the set, roughly in the middle of the nose. We see 
however that a rich set of distinctive channels leads into 
this single well that can be used to provide a reliable 
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description. Notice how two channels grow downwards 
to surround the mouth and a single channel runs up along 
the length of the nose which then splits into two further 
channels running parallel to the eyebrows. In all cases 
there are also channels forming along the cheekbones. 

5 Conclusions 
We have developed a new feature extraction 

technique, targeted primarily at ear biometrics but which 
readily extends to include face recognition. The 
technique is robust and reliable with remarkable 
invariance to initialization and possessing excellent noise 
tolerance. The beauty of this technique is that an explicit 
description of the target topology is not necessary. 
Extracting the potential well description merely involves 
following the force field lines and observing eventual 
clustering of coordinates. Taking account of the channel 
shape and ultimately the underlying shape of the energy 
surface can increase the level of detail in the description 
to meet any demand. 

We are currently investigating how linearity can be 
exploited to perform force field tracking in dynamic 
images. A dynamic force field can be updated by simply 
adding the force field associated with the difference 
between sequential images, often a sparse array and 
therefore easily computed. We are also investigating how 
information conservation, which is a consequence of the 
transform invertiblilty, can be exploited to perform image 
compression. 

A very important aspect of the transformation is the 
fact that it simulates a natural process, namely the 
formation of electric fields in the vicinity of electric 
charge distributions. For example the image formed on a 
charge-coupled device will result in a charge distribution 
which will have an associated electric force field. This 
holds out the prospect of a solid state device with direct 
image to force field conversion in real time. 
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Appendix 

Proof of Linearity 
Let A and B be elements of the vector space V of MxN 
matrices whose elements A, and Bi,, are real numbers 
representing pixel intensities. Also let W be the vector 
space of MxN matrices where the elements are forces as 
defined by the relation: 

(4 n) = (i, j )  

Now, to check that the defining relation for a linear 
transform is satisfied, we need to show that 

t(a,A+a,B) = a,t(A)+a,t(B), 
foralla,,a, E %,A,BE V 

(6) 

That is, we need to show that the force field of the sum of 
two separately scaled images is the same as the sum of the 
scaled force fields associated with the individual images. 
Accordingly, for the sum of the force fields associated 
with the two images we have, 

Hence, since we have shown that the defining relation is 
satisfied, the force field transform is indeed a linear 
transformation. 

[4] M203 Introduction to Pure Mathematics, Linear Algebra 
Block: Unit 4 Linear Transformations, Section 2: Matrices of 
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