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Abstract

A method for isotropic and anisotropic diffusion of vector probabilities in general, and pos-
terior probabilities in particular, is introduced. The technique is based on diffusing via coupled
partial differential equations restricted to the semi-hyperplane corresponding to probability func-
tions. Both the partial differential equations and their corresponding numerical implementation
guarantee that the vector remains a probability vector, having all its components positive and
adding to one. Applying the method to posterior probabilities in classification problems, spa-
tial and contextual coherence is introduced before the MAP decision, thereby improving the

classification results.

1 Introduction

The basic motivation of this work is to introduce contextual information into image segmentation
tasks by adding spatial coherence to the posterior probabilities corresponding to the classes present
in the scene. In [9] the authors proposed to introduce this spatial coherence via anisotropic diffusion
of the posterior probabilities. In this method, posterior probabilities for each class are computed,

they are then independently anisotropically smoothed [5], and only then the MAP decision rule
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is applied. Connections between this method and other popular techniques like Markov Random
Fields and Continuous Relaxation Labeling were shown as well. Although this technique was
already found to be useful for problems like MRI and SAR segmentation, two main difficulties are
encountered in this work. First, each posterior probability (one per class) is independently diffused,
thereby ignoring the intrinsic correlation between them. Second, due to the independent processing,
the posterior probabilities are not guaranteed to add to one even after a very short diffusion time.
To overcome this, the authors normalize the posterior probabilities after each discrete iteration,
normalization that has a non-trivial effect on the diffusion process itself.

In this work we show how to isotropically and anisotropically diffuse a vector of probabilities
while preserving the diffusion on the probabilities semi-hyperplane. In other words, the diffusion
process guarantees that the vector components are positive and add to one. Moreover, the nu-
merical implementation of this system of coupled PDE’s also preserves these properties, thereby
removing the necessity to project back into the semi-hyperplane. This approach then overcomes
both difficulties mentioned above and can be directly incorporated in the segmentation technique,
replacing the component-by-component diffusion. Although the work is here discussed in the frame-
work of posterior diffusion for image classification, it is clear that the technique can be applied to
the diffusion of other probabilities in other applications as well.

The basic idea of our approach is then to keep the diffusion process in the semi-hyperplane
corresponding to the vector of probabilities. This can be seen as a particular case of diffusion on
general manifolds, topic that has recently received a considerable amount of attention from the
image processing and computer vision communities [1, 4, 7, 8]. That is, instead of having the data
defined on IR", it is defined on a general manifold N (e.g., an hypersphere for directional data
[1, 4, 8] or a semi-hyperplane for probabilities). In addition, as we will see below, the results here

introduced can be obtained investigating the basic invariants of diffusion processes.

2 Problem Formulation and Basic Equations

Assume that a vector of a-posteriori probabilities p, mapping the image domain Q in IR? to the
manifold P = {p € R™ : ||p||s = 1,p; > 0}, is given. Each component p; of p equals the posterior

probability of a class ¢; € C = {¢; : 4 = 1,...,m}. These posterior probabilities can be obtained for

example via Bayes rule.



If we view the vectors p as a vector field, one possible way to add spatial coherence into the
classification process is to diffuse the distance between points in P, propagating the information
in the probability space, before a pixelwise MAP decision is made. Inspired by the harmonic
maps theory [8], the “distance” between two differential adjacent points in P depends on ||Vp|| :=
VO IVpi][2. This is the gradient of the probability vector. Giving a function p : R — IR (we

will later discuss different selections of p), we proceed to solve the following minimization process:

win J,, Jy = [ plIVpl)dc. M

Note that the minimization is restricted to the semi-hyperplane P.
From this, the system of coupled diffusion equations is obtained via the gradient descent flow

corresponding to this energy.

Property 1 The gradient descent of J, restricted to P is given by
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Proof: This is easily obtained computing the Euler-Lagrange and projecting it into P. O

Note again that the minimization is performed in the probability space P (a semi-hyperplane),
and the system of equations (2) guarantees that p(t) € P for all t. We have therefore obtained
a system of coupled PDE’s that preserves the unit L; norm which is characteristic of probability
vectors (the components p;(t) are positive as well).

It can be shown that 37, ||[Vp;|? = 2||Vp1|2 — 237, >itit1 Vpi-Vp;. Therefore, when the
number of classes is m = 2, ||Vp||? = 2||Vp;||?, i = 1,2, and the method is equivalent to separately
applying the diffusion to each posterior. For m > 3, the second term is like the correlation between
different components of p. This term is not present if we diffuse each posterior probability on its
own. This coupling is important to improve the classification results.

If we select p as the Ly norm, p(z) = x2, then (2) becomes the well known linear heat equation
% = V?p, which isotropically diffuses p. It is interesting to note that the heat equation that
was previously used to denoise signals as well to generate the so called scale spaces, preserves the

diffusion in the probability semi-hyperplane P. This is expected, since it is well known that this

equation holds the maximum principle and preserves linear combinations.

!This equations is an abbreviated notation for a set of PDE’s of the form 56”;' =V. (%VM) , 1=1,..,m.



The isotropic flow has no coupling between the probability components, and does not respect
boundaries. Therefore, as classically done for scalar diffusion [6], a more robust norm is selected.

For example, we can select the L; norm, p(z) = |z|, obtaining

% _v. (”g—zn) , 3)

clearly anisotropic, with a conduction coefficient controlled by ||Vp||. Once again, from the basic

invariants of this flow, the preservation of the vector on the P space was expected.

2.1 Numerical Implementation

The vector probability diffusion equations are to be implemented on a square lattice. The vector
field p is then p;;, where j,k is the position in the lattice. (For simplicity, we do not write the
subscript 7 indicating the probability components.) First we rewrite the equation (2) in a simpler
way, % =V.(gVp), g=70"(|IVpl)/|IVpll, and then apply a standard numerical scheme (assuming
Az =Ay=1):
ALt
W = 9541,k Pirre —Pik) — 91k (Pik — i1k +

ist Pipsr —P5) = 91 (Bl — Pip—)- (4)

The condition on At for stability is easily computed to be

1
At < . (5)
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To allow the existence of discontinuities in the solution we use the approximation of the gradient

developed in [3], ||Vp|i; = \/||Dj;z.p;-7k||2 + lm(D3,p% 4, Dy 2% 405 ) ||%, where D, and Dy, are the
forward and backward differences and m(z,y) is the minmod operator applied to each component

of p, m(z,y) = minmod(z,y) = min(|z|, |y[)(sign(z) + sign(y))/2.

Property 2 If At fulfills the stability condition (5) then pz-:','cm >0 and ||p§-j,'cAt||1 =1, so the evo-
lution given by (4) lives always in the manifold P. Moreover, if pl,, == min{p’ , ;.05 1,0k e 1, 0h 1}
and p,; == max{pj-_i_l,k,pz-_l’k,pz-,k_l_l,p;-,k_l}, the solution satisfies a mazimum (minimum) princi-
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ple: ph, <pii™t < ply



We then conclude that also the discrete equation (4) lives in the manifold P, and there is no
need for a projection back into the semi-hyperplane, in contrast with the approach by Teo et al.,

as discussed in the introduction.?

3 Examples

We now present examples of the vector probability diffusion approach here presented applied to
image segmentation, following the technique introduced in [9] . First, posterior probabilities are
computed for each class using Bayes rule. These are diffused with the anisotropic vector probability
diffusion flow (instead of the scalar one used in [9]), and then the MAP decision rule is applied.
We will compare our results with those obtained by Teo et al. in order to show the improvements
obtained with the vectorial approach.

The first example is based on synthetic data. The original image, containing four classes, is
shown on the top-left of Figure 1. We then add Gaussian noise, and the objective is to segment the
image back into four classes. The figure then shows the classification results without posterior dif-
fusion, followed by the classification results corresponding to two time steps for the vector posterior
diffusion approach and two time steps for the scalar approach. Using the correlation between the
posterior probabilities, as done by the vector approach here introduced and not by the scalar one
in [9], is of particular importance when one of the classes has less weight than the others. As shown
by this example, this class (white dots) will be mostly missed by the scalar approach. Comparing
the classification errors for class 4 (white dots) in Table 1, we see that the lowest classification error
is with vector probability diffusion, 15.82% against 18.46% for the scalar approach. Furthermore,
the classification error is more stable with the vectorial approach, and for the same average error
(approx. 10%), the lowest classification error for class 4 is obtained with our method, 26.95%
against 61.04% (see Table 1).

Figure 2 shows the results of our approach applied to the segmentation of video SAR data.

2To complete the implementation details, we need to address possible problems when ||Vp|| vanishes or becomes
very small. Asit isstandard in the literature, we define ||Vp||g = \/W , and use this instead of the traditional
gradient. (The stability condition (5) becomes At < (8/4.) To select the value of 3 we propose to look at 8 as a
lower diffusion scale, since in the discrete case probability differences lower than 8 will be diffused with a conduction

coefficient approximately inverse to 3. We set the value of the lower scale 3 in the range [0.001, 0.01].



Figure 1: Left to right and top to down: Original image, classification without diffusion, results of vector
probability diffusion for 18 and 25 iterations respectively, and results of the scalar approach for 10 and 15

iterations.

Three classes are considered, {shadow, object, background}, each one modeled as a Gaussian
distributions. 3 The first image in the sequence is segmented by hand to obtain an estimation of
the parameters of the distributions. For the rest of the images we perform the following process:
(a) The diffused posteriors of the previous image are used as priors and after 30 iterations the new
means and variances are estimated; (b) To obtain a better segmentation which does not depend on
the previous priors, a new diffusion is applied using uniform priors. In this way the small details
are captured; (c) The steps (a) and (b) are iterated and in the last iteration the idea of (a) is used.

As we can see in the Figure 2 the results are very good, and the small details are captured.

These results outperform those reported in [2].

4 Conclusions

We have presented a method for the diffusion of probability vectors. Both the corresponding diffu-
sion equations and their numerical implementation guarantee that the diffused quantities remain
probabilities, that is, are positive and add to one. This method can be used to incorporate spa-

tial coherence into MAP-based segmentation techniques. We have shown that the approach here

3If we learn the distribution using a kernel method we find that two of the classes are nearly Gaussian and the

last one could be approximated with a Gaussian.



Tter. | Class 1 | Class 2 | Class 3 | Class 4 | Average

0 53.77 26.67 53.68 27.34 46.65

10 47.63 17.47 47.40 22.46 39.70
15 33.26 4.76 33.30 17.77 26.02
18 24.01 2.33 24.83 15.82 18.95
20 19.75 1.50 20.88 17.77 15.78
25 12.16 0.81 14.39 26.95 10.70

5 53.70 26.51 53.61 27.34 46.55
7 50.02 18.74 49.85 24.90 41.85
10 35.06 6.24 35.03 18.46 27.69
15 17.48 1.51 18.99 24.32 14.40

20 18.11 0.76 13.14 61.04 10.34

Table 1: Classification errors per class and average for the example in Figure 1. The first row corresponds
to the classical MAP approach, where no diffusion has been applied to the posterior probabilities. The next
four rows correspond to four different time steps of the vector probability diffusion approach here presented,

followed by four time steps for the scalar approach of Teo et al..

introduced outperforms similar techniques that independently diffuse each probability component,

adding the constraints as an additional, not formally justified, projection step.
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