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ABSTRACT

In this paper we propose a new algorithm of noise reduction
in color images. The new technique of multichannel image
enhancement is capable of reducing impulse and Gaussian
noise and it outperforms the basic methods based on vector
median used for the noise reduction in color images. In the
paper a new smoothing operator, based on a random walk
model and on a fuzzy similarity measure between pixels
connected by a digital geodesic path is introduced. The ef-
ficiency of the proposed method was tested on the standard
color images using the widely used objective image quality
measures.

1. STANDARD NOISE REDUCTION FILTERS
Most popular nonlinear, multichannel filters are based on
the ordering of vectors in a predefined moving window [1-
6]. The output of these filters is defined as the lowest ranked
vector according to a specific vector ordering technique.

Let F(z): represent a multichannel image and let W
be a window of finite size n (filter length). The noisy im-
age vectors inside the filtering window W are denoted as
F;, j=0,1,..,n— 1. If the distance between two vec-
tors F;, F; is denoted as p(F;, F;) then the scalar quan-
tity R; = Z?:_ol p(F;, F;), is the distance associated with
the noisy vector F;. The ordering of the R;’s: Ry <
... < Rn_1), implies the same ordering to the correspond-
ing vectors F; : F(3y < ... < F(,_,y. Nonlinear ranked
type multichannel estimators define the vector F g as the
filter output. However, the concept of input ordering, ini-
tially applied to scalar quantities is not easily extended to
multichannel data, since there is no universal way to define
ordering in vector spaces.

To overcome this problem, distance functions are often
utilized to order vectors. As an example, the Vector Median
Filter (VMF) uses the L or Ly norm to order vectors ac-
cording to their relative magnitude differences. The orien-
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tation difference between two vectors can also be used to
remove vectors with atypical directions (Vector Directional
Filter - VDF, Basic Vector Directional Filters- BVDF).

The reduction of image noise without major degradation
of the image structure is one of the most important problems
of the Jow-level image processing. A whole variety of algo-
rithms has been developed, but none of them can be seen
as a final solution of the noise problem and therefore a new
filtering technique, which copes better with impulsive and
Gaussian noise has been proposed.

2. NEW ALGORITHM OF NOISE REDUCTION

Let us assume, that R? is the Euclidean space, W is a planar
subset of R? and z, y are points of of the set W.

A path from z to y is a continuous mapping P: [a, b] —
X, such that P(a) = = and P(b) = y. Point  is the starting
point and y is the end point of the path P [8-10].

An increasing polygonal line P on the path P is any
polygonal line P = {g(X)}irg,a=X < ... <A, =b.
The length of the polygonal line P is the total sum of its
constitutive line segments L(P) = Y &, p(P(Ai_1, Ai),
where p(z,y) is the distance between the points z and y,
when a specific metric is adopted.

If P is a path from 2 to y then it is called rectifiable, if
and only if L{P), where P is an increasing polygonal line
is bounded. Its upper bound is called the length of the path
P. The geodesic distance p* (z,y) between points z and y
is the lower bound of the length of all paths leading from z
to y totally included in W. If such paths do not exist, then
the value of the geodesic distance is set to co. The geodesic
distance verifies p"¥ (z,y) > p(z,y) and in the case when
W is a convex set then p" (z,y) = p(z, y).

The notion of the geodesic distance can be extended to
a lattice, which is a set of discrete points, in our case image
pixels.

Let a digital lattice H = (F, N) be defined by F, which
is the set of all points of the plane (pixels of a color im-


mailto:kostas@dsp.toronto.edu

age) and the neighbourhood relation A/ between the lattice
points.

A digital path P = {p;}1 , on the lattice H is a se-
quence of neighbouring points (p;_1,p;) € N. The length
L(P) of digital path P {p;}7_ is simply S0, g™ (pi_1, p:)-
If P(z,y) denotes the digital path connecting the points z
and y in F then the lattice distance between those points is
defined as p™(z,y) = Pr?in) L[P(z,y)].

z.y

Constraining the paths to be totally included in a pre-
defined set W € F yields the digital geodesic distance
oW In this paper we will assign to the distance of neigh-
bouring points the value 1 and will be working with the 8-
neighbourhood system.

Let the pixels (i, 7) and (k, I) be called connected , de-
noted as (i,7) < (k,{), if there exists a geodesic path
PW{(i, ), (k,1)} contained in the set W starting from (%, 5)
and ending at (k, ) (Fig. 1).

If two pixels (zg,yo) and (Zn,y.,) are connected by a
geodesic path PV {(20,90), (€1,91), - - -, (Zn, yn) } of length
n then let x

n—1
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k=0
49)
be u measure of dissimilarity between pixels (2o, yo) and
(41, ), along a specific geodesic path PW joining (o, yo)
and (2, Y ). If a path joining two distinct points z, y, such
that F(2) = F(y) consists of lattice points of the same val-
ues, then x"™(z,y) = 0 otherwise x"V""(z,y) > 0.
Let us now define the similarity function between two
pixels connected along all geodesic digital paths leading
from (7, j) and (k, 1) (Fig. 1) [7]

W),k Dy = =Sexp [ X[ G 9), (k)]

=1

)
where w is the number of all geodesic t;a)'alhs connecting
(¢,7) and (k,1), B is a parameter and x;" "{(i,7), (k, )}
is a dissimilarity value along a specific path from a set of
all w possible paths leading from (i, 5) to (k, {). In this way
V{4, ), (B, 1)) is an average value, taken over all routes
joining the starting point (¢, 7) and the end point (k, [).

gral 4afl af gb—af| af 4| aji 9| 9| g
| @ r:

ap a| qfl 4| 4! g9 ad—a| gl 9] g9L-g
al af qaff af a| aff a| g af] a| 4| 4«

Fig. 1. There are four geodesic paths of length 2 connecting
two neighbouring points contained in the 3 x 3 window W
when the 8-neighbourhood system is applied.
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For n. = 1 and W a square mask of the size 3 x 3, we
have /‘LWJ{(ivj): (k> l) = exp {_ﬂ”F(Zv]) - F(k l)”}}
and when F(i, j) = F(k, 1) then x"""{(i, 5), (k, 1)} = 0,
1{(i,7), (k,1)} =1, and for ||F (i, j) — F(k,{)]| — oo then
n—0.

The normalized similarity function takes the form

Won i A — MVV,n{(,i’ j)’ (k l)}
Y, 9), (kD) = 5 B wWord (i, 5), (L, m)}
(tm)e(i.5)
3)

The normalized similarity function has the property

> W), (kD) =1 )

(ke (i)

Now we are in a position to define a smoothing transforma-

tion J

i)=Y $W9), (kDY - Fk,l) (5

(kD)< (1,5)

where (k,l) are points which are connected with (4, 7) by
geodesic digital paths of length n included in W.

3. RESULTS

The effectiveness of the new smoothing operator defined by
(5) was tested using the LENA and PEPPERS standard im-
ages contaminated by Gaussian noise of o = 30 We also
used the LENA image contaminated by 4% impulsiv noise
(salt & pepper added on each channel) mixed with Gaussian
noise (o = 30).

The performance of the presented method was evaluated
by means of the objective image quality measures RMSE,
PSNR, NMSE and NCD [3]. Tables 2 and 3 show the ob-
tained results for n = 3 and [ increasing linearly from 10
to 30. After 3 iterations the filtered image was being sharp-
ened and was visually more pleasing, however the quality
measures were decreasing. Therefore only the results of 3
iterations are shown in the Tab. 2 and 3. Additionally Fig.
2 shows the comparison of the new filtering technique with
the standard vector median.

For the calculation of the similarity function we used the
Ly metric and an exponential function, however we have
obtained good results using other convex functions and dif-
ferent vector metrics.

4. CONCLUSIONS

In this paper, a new filter for noise reduction in color im-
ages has been presented. Experimental results indicate that
the new filtering technique outperforms standard procedures
used to reduce mixed impulsive and Gaussian noise in color
images. The efficiency of the new filtering technique is
shown in Tables 2 and 3.



Notation Filter
AMF Arithmetic Mean Filter
VMF Vector Median Filter
BVDF Basic Vector Directional Filter
GVDF Generalized Vector Directional Filter
DDF Directional-Distance Filter
HDF Hybrid Directional Filter
AHDF Adaptive Hybrid Directional Filter
FVDF Fuzzy Vector Directional Filter
ANNF Adaptive Nearest Neighbor Filter
ANP-EF Adaptive Non Parametric (Exponential) Filter
ANP-GF Adaptive Non Parametric (Gaussian) Filter
ANP-DF Adaptive Non Parametric (Directional) Filter
VBAMMEF | Vector Bayesian Adaptive Median/Mean Filter

Table 1. Filters taken for comparison with the proposed
filter [1-5].

{1}

2

[10]
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d)

Fig. 2. Comparison of the efficiency of the vector median
and the proposed filter: a) test image (part of a scanned
map), b) result of the new filtering technique (f = 20, a =
1.25, 3 iterations), ¢) result of the standard vector median
filtration (3 x 3 mask), ¢) result of the DDF (3 x 3 mask).



METHODN NMSE RMSE SNR PSNR NCD METHOD N NMSE RMSE SNR PSNR NCD
(10-3] @) | 4Bl | [10-9] [10°%) [B] | [d4B] | [1077%) |
NONE 502410 | 28.683 | 12.989 | 18.978 | 244.190 | NONE 905930 | 42674 | 10429 | 15528 ] 305550
AMF; 90184 | 12152 | 20449 | 26438 | 115.210 AMF, 128.940 | 16,099 | 18.896 | 23.995 | 122.880
AMF; 88815 | 12.060 | 20515 | 26304 | 99.043 AMF; 57444 | 13996 | 20112 | 25211 | 95.800
AMFs 113840 | 13.653 | 19437 | 25426 | 98.853 AMFs 113.760 | 15.122 | 19440 | 24539 | 92312
VMF, 168.830 | 16.627 | 17.725 | 23.714 | 158.920 VME, 161.420 | 18.013 | 17920 | 23.019 | 161700
VMF 113420 | 13.628 | 19453 | 25442 | 129.700 VMFs 104280 | 14478 | 19.818 | 24916 | 128.600
VMFs T05.180 | 13.124 | 19.781 | 23.770 | 123.390 VMFs 96464 | 13.925 | 20156 | 25.255 | 121.790
BVDF, 372.320 | 24.601 | 14.291 | 20.280 | 153.420 BVDF, 354.450 | 26.602 | 14.504 | 19.603 ] 152490
BVDF, 363.300 | 24.304 | 14.396 | 20.385 | 129.040 BVDF, 336460 | 26.006 | 14.731 | 19.829 | 123.930
BVDFs 367.740_| 24539 | 14.345 | 20334 | 124.350 BVDFs 338040 | 26.102 | 14.609 | 19.797 | 118.500
GVDEF T94.640 | 15390 | 18.397 | 24.386 | 127370 GVDF, 140070 | 16.835 | 18.509 | 23.607 | 126.820
GVDF3 99.400 | 12.758 | 20026 | 26.015 | 97.348 GVDF, 03444 | 13.705 | 20294 | 25393 | 94.627
GVDFs 100490 | 12.828 | 19.979 | 25068 | 92.383 GVDFs O1.118 | 13.534 | 20404 | 25.503 | 89.277
DDF, 184.620 | 17.387 | 17331 | 23.326 | 149540 DDF, 176,670 | 18.845 | 17.528 | 22627 | 152.050
DDFs 127060 | 14436 | 18953 | 24.942 | 120400 DDFs 119330 | 15488 | 19.232 | 24331 | 119940
DDFs5 118820 | 13.049 | 19.251 | 25240 | 114400 DDFs 110620 | 14912 | 19.561 | 24.660 | 113390
HDF, 147.060 | 15518 | 18.325 | 24.314 | 139380 HDF, 143.190 | 16.966 | 18441 | 23.539 | 139.360
TDF; 87.730 | 11.986 | 20569 | 26.558 | 107.600 HDF3 82413 | 12.871 | 20.840 | 25039 | 104.620
HDFs 70.608 | 11424 | 20.986 | 26.975 | 101.140 HDFs 74487 | 12.236 | 21.279 | 26.378 | 97.39
AHDF, 131390 | 14.668 | 18.814 | 24.803 | 137.650 AHDF, 132.710 | 16333 | 18771 | 23.860 | 138.180 |
AHDF5 78739 | 11.355 | 21.038 | 27.027 | 106.180 AHDF, 75336 | 12.298 | 21236 | 26.33% | 103.410
AHDFs 72331 | 10.883 | 21407 | 27.396 | 99.673 AHDFs 68563 | 11740 | 21639 | 26.738 | 96327
FVDF, 103950 | 13.047 | 19.832 | 25.821 | 112450 FVDF; 108760 | 14.786 | 19.635 | 24.734 | 111220
FVDF, 72888 | 10925 | 21.373 | 27362 | 89.743 FVDF5 73796 | 12079 | 21320 | 26418 | 83629
FVDEs 77012 | 11230 | 21.134 | 27.123 | 88023 FVDFs 76.274_| 12382 | 21.176 | 26.275 | 80.081 |
ANNE; 112.660 | 13.383 | 19.482 | 25471 | 120.270 ANNE, 110.720 | 14.919 | 19.338 | 24.656 | 113.560
ANNF3 80934 | 11512 | 20919 | 26908 | 96.789 ANNF; 75.652_| 12332 | 21212 | 26310 | 86.836
ANNF 84.101 | 11735 | 20732 | 26.741 | 93.171 ANNTs 76751 | 12421 | 21.149 | 26247 | 82.825
ANP-E; 88.827 | 12.060 | 20,515 | 26.504 | 115.100 ANPE; | 128.390 | 16.077 | 18.908 ]| 24.007 | 122.850
ANP-Es 79.688 | 11423 | 20986 | 26.975 | 100.860 ANP-Es 50500 | 13488 | 20433 | 25.532 | 97.621
ANP-Es 94795 | 12450 | 20232 | 26.221 | 101070 ANP-Es 96.930 | 13.950 | 20.135 | 25.234 | 94.131
ANP-G, 88787 | 12.058 | 20517 | 26.506 | 115.080 ANP-G, 128.600 | 16.078 | 18.908 | 24.006 | 122.900
ANP-Gs 79674 | 11422 | 20.987 | 2676 | 100.850 ANP-Gg 90523 | 13480 | 20432 | 25531 | 97.603
ANP-Gs 54741 | 12455 | 20235 | 26.224 | 101.050 ANP-Gs 96990 | 13.963 | 20.133 | 25.231 | 94.134
ANP-D; 105280 | 13.130 | 19.776 | 25765 | 113.610 ANP-D; 113.900 | 15.131 | 19435 | 24.533 | 115.230
ANP-Dg 73211 | 10.949 | 21.354 | 27.343 | 89.078 ANP-D; 74203 | 12.213 | 21296 | 26394 | 85.026
ANPDs 78410 | 11332 | 2105 | 27.045 | 87.650 ANP-Ds 76265 | 12381 | 21177 | 26275 | 81202
VBAMMF,; | 00184 | 12.152 | 20449 | 26438 | 115.210 VBAMMF, | 128940 | 16.099 | 18.896 | 23.995 | 122.880
VBAMMFs | 88.815 | 12.060 | 20515 | 26.504 | 99.043 VBAMMF; | 97444 | 13996 | 20112 | 25211 | 95.800
VBAMMEs | 113840 | 13.653 | 19437 | 75426 | 98.853 VBAMMFs__| 113760 | 15.122 | 19440 | 24539 | 92312
NEW, 65.412_| 10349 | 21843 | 27.832 | 95.248 NEW, 74762 | 12.259 | 21263 | 26.362 | 83.585
REW, 57921 | 9739 | 22.372_| 28.361 | 88.917 NEW, 85239 | 10537 | 22578 | 27.676 | 72.11%
NEW, 61473 | 10.033 | 22.113 | 28.102 | 88.561 NEW; 56078 | 10.617 | 22512 | 27.611 | 70.008
Table 2. Comparison of the new algorithm with the stan- Table 3. Comparison of the new algorithm with the stan-
dard techniques (Tab. 1) using the PEPPERS standard im- dard techniques (Tab. 1) using the LENA standard image
age corrupted by Gaussian noise o = 30. The subscripts corrupted by 4% Impulse and Gaussian noise o = 30. The
denote the iteration number. subscripts denote the iteration number.
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