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ABSTRACT 
In this paper we propose a new algorithm of noise reduction 
in color images. The new technique of multichannel image 
enhancement is capable of reducing impulse and Gaussian 
noise and it outperforms the basic methods based on vector 
median used for the noise reduction in color images. In the 
paper a new smoothing operator, based on a random walk 
model and on a fuzzy similarity measure between pixels 
connected by a digital geodesic path is introduced. The ef- 
ficiency of the proposed method was tested on the standard 
color images using the widely used objective image quality 
measures. 

1. STANDARD NOISE REDUCTION FILTERS 
Most popular nonlinear, multichannel filters are based on 
the ordering of vectors in a predefined moving window [ 1- 
61. The output of these filters is defined as the lowest ranked 
vector according to a specific vector ordering technique. 

Let F(rc): represent a multichannel image and let W 
be a window of finite size n (filter length). The noisy im- 
age vectors inside the filtering window W are denoted as 
Fj , j = 0,1, ..., n - 1 ,  If the distance between two vec- 
tors F;, Fj is denoted as p(F;, Fj) then the scalar quan- 
tity R; = C7zd p(Fi, Fj), is the distance associated with 
the noisy vector Fi . The ordering of the Ri 's: R(1) 5 
. . . 5 R(n-l) ,  implies the same ordering to the correspond- 
ing vectors F i  : F(l)  < . . . < F(n-l). Nonlinear ranked 
type multichannel estimators define the vector F(o) as the 
filter output. However, the concept of input ordering, ini- 
tially applied to scalar quantities is not easily extended to 
multichannel data, since there is no universal way to define 
ordering in vector spaces. 

To overcome this problem, distance functions are often 
utilized to order vectors. As an example, the Vector Median 
Filter (VMF) uses the L1 or L2 norm to order vectors ac- 
cording to their relative magnitude differences. The orien- 
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tation difference between two vectors can also be used to 
remove vectors with atypical directions (Vector Directional 
Filter - VDF, Basic Vector Directional Filters- BVDF). 

The reduction of image noise without major degradation 
of the image structure is one of the most important problems 
of the low-level image processing. A whole variety of algo- 
rithms has been developed, but none of them can be seen 
as a final solution of the noise problem and therefore a new 
filtering technique, which copes better with impulsive and 
Gaussian noise has been proposed. 

2. NEW ALGORITHM OF NOISE REDUCTION 
Let us assume, that R2 is the Euclidean space, W is a planar 
subset of R2 and z, y are points of of the set W .  

A path from z to y is a continuous mapping P: [a, b] ---+ 

X ,  such that ?(a)  = 5 and P(b)  = y. Point z is the starting 
point and y is the end point of the path P [%lo]. 

An increasing polygonal line P on the path P is any 
polygonal line P = {g(Ai)}yxo , a  = A0 < . . . < A, = b. 
The length of the polygonal line P is the total sum of its 
constitutive line segments L ( P )  = Cy=l p(P(Ai-1, A;), 
where p(z,  y) is the distance between the points z and y, 
when a specific metric is adopted. 

If P is a path from z to y then it is called rectifiable, if 
and only if L(P) ,  where P is an increasing polygonal line 
is bounded. Its upper bound is called the length of the path 
P, The geodesic distance pw(z,  y) between points 5 and y 
is the lower bound of the length of all paths leading from z 
to y totally included in W .  If such paths do not exist, then 
the value of the geodesic distance is set to ca. The geodesic 
distance verifies pw(z ,  y) 2 p(z,  y) and in the case when 
w is a convex set then pw(z, y) = p ( x ,  y). 

The notion of the geodesic distance can be extended to 
a lattice, which is a set of discrete points, in our case image 
pixels. 

Let a digital lattice f i  = (F, N) be defined by F, which 
is the set of all points of the plane (pixels of a color im- 
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age) and the neighbourhood relation N between the lattice 
points. 

A digital path P = {p;):=, on the lattice IFI is a se- 
quence of neighbouring points (p i -  1,  pi) E N. The length 
L ( P )  ofdigital path P { p i } ~ = .  is simply E:=, p"(p-l,pi). 
If P(2,  y) denotes the digital path connecting the points x 
and ?/ in F then the lattice distance between those points is 
defined a s  pw(z ,  y j  = min L [ P ( z ,  y)]. 

Q X > Y )  

Constraining the paths to be totally included in a pre- 
defined set GII E F yields the digital geodesic distance 
p"'. In this paper we will assign to the distance of neigli- 
bouring points the value 1 and will be working with the 8- 
neighhourhood system. 

Let the pixels ( i ,  .?) and ( k ,  1)  lie culled connected , de- 
noted iis ( i j )  U ( k >  1) , if there exists ii geodesic path 
Pw{(i,:j), ( k ,  1 ) )  containedin the set 1Y startingfrom ( i , j )  
and ending at ( k ,  1) (Fig. 1). 

11 two pixels (Q, yo) and (xn, yrl,j are connected by a 
geodesic path P"{ (xg] yo), (xl ~ y l ) ,  . . . , (xn; y,)) of length 
T L  then let x 

n - 1 

x'+',rf { (50, yo j , ( G t ,  Yn j 1 =E I lF(Qc+l, Y k + l )  -F(% Y k )  I I 
k=O 

(1)  
be ia measure of dissimilarity between pixels (zo, yo) and 
(z,~, gr,) ,  along a specific geodesic path P" joining (zo,  yo) 
and ( z n , y n ) .  If a path joining two distinct points 2, y, such 
that F(a:) = F(y) consists of lattice points of the same val- 
ues, then x"'.~ (x, y)  = 0 otherwise ~'~"'(z, y) > 0. 

Let us now define the similarity function between two 
pixels connected along all geodesic digital paths leading 
from ( i , j )  and ( k ,  1) (Fig. 1) 171 

For n = 1 w d  W a square mask of the size 3 x 3,  we 
havepW1{(i,j),  ( k , 1 ) }  = exl>{-p/lF(i,j) - F ( k , 1 ) I I } )  
and when F( i , j )  = F(k, 1 )  then xwan{(Z,j), ( I C ,  1)) = 0, 
p{ ( i ,  j ) ,  ( I C ,  1)) = 1, and for I IF(i, j )  - F(k, 1 )  I I + 00 then 
/A, + 0. 

The normalized similarity function takes the form 

( 3 )  
The normalized similarity function has the property 

Now we are in a position to define a smoothing transforma- 
tion J 

J(i,j) = $ 'v .n{( i ; j ) ,  ( k ,  1 ) )  F(k, 1)  ( 5 )  
( k J ) H i A  

where ( k :  1) are points which are connected with ( i , j )  by 
geodesic digital paths of length ri included in Mi. 

3. RESULTS 

The effectiveness of the new smoothing operator defined by 
(5) was tested using the LENA and PEPPERS standard, im- 
ages contaminated by Gaussian noise of r = 30: We also 
used the LENA image contaminated by 4% impulsiv noise 
(salt & pepper added on each channeP) mixed with Gaussian 
noise (CT = 30). 

The performance of the presented method was evaluated 
by means of the objective image quality measures RMSE, 
PSNR, NMSE and NCD [3]. Tables 2 and 3 show the ob- 
tained results for n = 3 and p increasing linearly from 10 
to 30. After 3 iterations the filtered image was being sharp- 
ened and was visually more pleasing, however the quality 
measures were decreasing. Therefore only the results of 3 
iterations are shown in the Tab. 2 and 3. Additionally Fig. 
2 shows the comparison of the new filtering technique with 
the standard vector median. 

For the calculation of the similarity function we used the 
L1 metric and an exponential function, however we have 
obtained good results using other convex functions and dif- 
ferent vector metrics. 

( 2 )  

is ia dissimilarity value along ia specific path from a set of 
all w possible paths leading from (,i, j )  to ( k ,  1). In this way 

joining the starting point (i, j )  and the end point ( k ,  1). 
/,,w.n { (.', 1 J ) ,  ( k ,  1)) is an average value, taken over all routes 

4. CONCLUSIONS 

Fig. 1.  There are four geodesic paths of length 2 connecting 
two neighbouring points contained in the 3 x 3 window W 
when the 8-neighbourhood system is applied. 

In this paper, a new filter for noise reduction in color im- 
ages has been presented. Experimental results indicate that 
the new filtering technique outperform standard procedures 
used to reduce mixed impulsive and Gaussian noise in color 
images. The efficiency of the new filtering technique is 
shown in Tables 2 and 3. 
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Notation Filter 
Arithmetic Mean Filter 
Vector Median Filter 

BVDF 
GVDF Generalized Vector Directional Filter - _. 

DDF 
HDF 

AHDF 
FVDF 
ANNF 

ANP-EF 
ANP-GF 
A " - D F  

VBAMMF 

. .. 

Directional-Distance Filter 
Hybrid Directional Filter 

Adaptive Hybrid Directional Filter 
Fuzzy Vector Directional Filter 

Adaptive Nearest Neighbor Filter 
Adaptive Non Parametric (Exponential) Filter 

Adaptive Non Parametric (Gaussian) Filter 
Adaptive Non Parametric (Directional) Filter 

Vector Bayesian Adaptive M e d i a a e a n  Filter 
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METHODN NMSE RMSE SNR PSNR NCD 
[dB] [dB] 

NONE 502.410 28.683 12.989 18.978 244.190 
AMFl 90.184 12.152 20.449 26.438 115.210 
AMF3 88.815 12.060 20.515 26.504 99.043 
AMF5 113.840 13.653 19.437 25.426 98.853 
VMFl 168.830 16.627 17.725 23.714 158.920 
VMF3 113.420 13.628 19.453 25.442 129.700 
VMF5 105.180 13.124 19.781 25.770 123.390 
BVDFl 372.320 24.691 14.291 20,280 153.420 
BVDF3 363.390 24.394 14.396 20.385 129.040 
BVDF5 367.740 24.539 14.345 20.334 124.350 
GVDFl 14t.640 15.390 18.397 24.386 127.370 
GVDF3 99.400 12.758 20.026 26.015 97.348 
GVDF5 100.490 12.828 19.979 25.968 92.583 
DDFl 184.620 17.387 17.337 23.326 149.540 
DDF3 127.260 14.436 18.953 24.942 120.400 
DDFs 118.820 13.949 19.251 25.240 114.400 

HDFl 147.060 15.518 18.325 24.314 139.380 
HDF3 87.730 11.986 20.569 26.558 107.600 
HDFs 79.698 11.424 20.986 26.975 101.140 

AHDFl 131.390 14.668 18.814 24.803 137.650 
~ AHDF3 78.739 11.355 21.038 27.027 106.180 

AHDF5 72.331 10.883 21.407 27.396 99.673 
FVDFl 103.950 13.047 19.832 25.821 112.450 
FVDF3 72.888 10.925 21.373 27.362 89.743 
FVDF5 77.012 11.230 21.134 27.123 88.023 
ANNFl 112.660 13.583 19.482 25.471 120.270 
A " F 3  80.934 11.512 20.919 26.908 96.789 
A " F 5  84.101 11.735 20.752 26.741 93.171 
ANP-El 88.827 12,060 20.515 26.504 115.100 
ANP-Es 79.688 11.423 20.986 26.975 100.860 
ANP-E5 94.793 12.459 20.232 26.221 101.070 
ANP-Gl 88.787 12.058 20.517 26.506 115.080 
ANP-G, 79.674 11.422 20.987 26.976 100.850 
ANP-G5 94.741 12.455 20.235 26.224 101.050 
ANP-Dl 105.280 13.130 19.776 25.765 113.610 
ANP-Dz 73.211 10.949 21.354 27.343 89.078 
ANP-Da 78.419 11.332 21.056 27.045 87.650 

VBAMMFl 90.184 12.152 20.449 26.438 115.210 
VBAMMF3 88.815 12.060 20.515 26.504 99.043 
VBAMMFs 113.840 13.653 19.437 25.426 98.853 

NEW1 65.412 10.349 21.843 27.832 95.248 
NEW2 57.921 9.739 22.372 28.361 88.917 
NEW3 61.473 10.033 22.113 28.102 88.561 

Table 2. Comparison of the new algorithm with the stan- 
dard techniques (Tab. 1) using the PEPPERS standard im- 
age corrupted by Gaussian noise CT = 30. The subscripts 
denote the iteration number. 

NONE 
AMFl 
AMF3 
AMFs 
VMFl 
VMF3 
VMFs 
BVDFl 
BVDF3 
BVDF5 
GVDFl 
GVDF3 
GVDF5 
DDFl 
DDF3 
DDF5 
HDFl 
HDF3 
HDF5 

AHDF, 

I METHODN I NMSE I RMSE I SNR I PSNR I NCD I 
I ~ B I  r d ~ i  I 

905.930 42.674 10.429 15.528 305.550 
128.940 16.099 18.896 23.995 122.880 
97.444 13.996 20.112 25.211 95.800 
113.760 15.122 19.440 24.539 92.312 
161.420 18.013 17.920 23.019 161.700 
104.280 14.478 19.818 24.916 128.620 
96.464 13.925 20.156 25.255 121.790 

354.450 26.692 14.504 19.603 152.490 
336.460 26.006 14.731 19.829 123.930 
338.940 26.102 14.699 19.797 118.500 
140.970 16.833 18.509 23.607 126.820 
93.444 13.705 20.294 25.393 94.627 
91.118 13.534 20.404 25.503 89.277 
176.670 18.845 17.528 22.627 152.050 
119.330 15.488 19.232 24.331 119.940 
110.620 14.912 19.561 24.660 113.390 

143.190 16.966 18.441 23.539 139.360 
82.413 12.871 20.840 25.939 104.620 
74.487 12.236 21.279 26.378 97.596 
132.710 16.333 18.771 23.869 138.180 

AHDF3 
AHDF5 
FVDFl 
P D F 3  
FVDF5 
A"F1 
A " F 3  
ANNFs 
ANP-Ei 
ANP-E3 
ANP-E5 
ANP-Gl 
ANFG3 
ANP-G5 
ANP-DI 
ANP-Dz 
ANP-Ds 

VB-1 
VBAMMF3 
VBAMMFs 

NEW1 
NEW2 
NEW3 

75.236 12.298 21.236 26.334 103.410 
68.563 11.740 21.639 26.738 96.327 
108.760 14.786 19.635 24.734 111.220 
73.796 12.179 21.320 26.418 83.629 
76.274 12.382 21.176 26.275 80.081 
110.720 14.919 19.558 24.656 113.560 
75.652 12.332 21.212 26.310 86.836 
76.757 12.421 21.149 26.247 82.825 
128.590 16.077 18.908 24.007 122.890 
90.509 13.488 20.433 25.532 97.621 
96.930 13.959 20.135 25.234 94.131 
128.600 16.078 18.908 24.006 122.900 
90.523 13.489 20.432 25.531 97.603 
96.990 13.963 20.133 25.231 94.134 
113.900 15.131 19.435 24.533 115.230 
74.203 12.213 21.296 26.394 85.026 
76.265 12.381 21.177 26.275 81.202 
128.940 16.099 18.896 23.995 122.880 
97.444 13.996 20.112 25.211 95.800 
113.760 15.122 19.440 24.539 92.312 
74762 12.259 21.263 26.362 83.585 
55.239 10.537 22578 27.676 72.115 
56078 10.617 22512 27.611 70.008 

Table 3. Comparison of the new algorithm with the stan- 
dard techniques (Tab. 1) using the LENA standard image 
corrupted by 4% Impulse and Gaussian noise CT = 30. The 
subscripts denote the iteration number. 
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