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Abstract - In this paper, we present a fuzzy
Markovian method for brain tissue segmentation
from magnetic resonance images. Generally, there
are three principal brain tissues in a brain dataset:
gray matter, white matter and cerebrospinal fluid.
However, due to the limited resolution of the
acquisition system, many voxels may be composed
of multiple tissue types (partial volume effects). The
proposed method aims to calculate the fuzzy
membership of each voxel to indicate the partial
volume degree wusing a fuzzy Markovian
segmentation. Since our method is unsupervised, it
first estimates the fuzzy Markovian Random Field
model parameters using a stochastic gradient
algorithm. The efficiency of the proposed method is
quantified on a digital phantom using an absolute
average error, and qualitatively tested on real MRI
brain data.

Introduction

Image segmentation is a classical problem in
computer vision and is of paramount importance to
medical imaging. The study of many brain disorders
requires accurate tissue segmentation from magnetic
resonance (MR) images of the brain. Manual tracing
of the three brain tissues white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) in MR
images by a human expert is too time consuming for
studies involving large amounts of data.

Automated and reliable tissue -classification is
complicated by the overlap of MR intensities of
different tissue classes (partial volume effects). The
problem of partial volume effect is often ignored by
many proposed methods, which produce a
classification where each voxel is assigned to a
single tissue [1][2]. Two main reasons lead to the
problem of partial volume effects: the imaging
resolution that causes many voxels to be a mixture
of two or more than two tissues and the constitution
of a brain cannot be restricted to only the three pure
tissues (GM, WM and CSF). Therefore, in order to
obtain accurate segmentation, it is necessary to
determine the degree to which voxels are similar to,
or belong to, one or more tissue categories. Recently

some approaches have been presented to deal with
these problems [3][4]. An extensive review of this
issue is given in [5].

It is now agreed by both fuzzy logic and
statistics communities that fuzzy and probabilistic
approaches are rather complementary than
competitive. The distinction between them is based
on how uncertainty is captured by each concept. The
essence of our model is to exploit the
complementarities of fuzzy and probabilistic
approaches combining their strengths in what we
call fuzzy MRF. In this paper, we consider a brain
as 3D fuzzy fields which consist of three main
tissues (hard classes), and the mixtures of the pure
brain tissues (fuzzy classes or mixclasses). A Fuzzy
MRF model is used to take into account the
contextual information, statistical information of
image signals and the anatomical information of the
brain. As our method is unsupervised, the first step
is to estimate optimally all parameters used in the
proposed models: statistical parameters of
distribution of the three hard classes and parameters
of the Markovian distribution of the fuzzy field. The
fuzzy Markovian segmentation is then carried out
using the ICM (Iterated Conditional Modes)
algorithm [6] with parameters of the Markovian
distribution estimated in the first step.

Fuzzy MRF model

The classical hard Markov fields are widely used in
many applications, such as image restoration [7],
image segmentation [8] and volumetric object
reconstruction [9]. The fuzzy Markov fields,
recently introduced by Pieczynski [10], are
particularly attractive in the case of presence of
fuzzy regions in an image. They were mainly used
to deal with the satellite image analysis.

The partial volume effect appears when more
than one type of class or material occupies one
voxel or pixel of an image. These voxels or pixels
are usually called mixels. Thus, the fuzzy
segmentation of images consists of allowing each
pixel to belong simultaneously to numerous classes.
The problem is to associate to each pixel s a vector




(a,...,ax)e[0,17F  with (a+..4ax)=1. The as
represent the partial volume proportions of each
“pure” tissue. We consider two random fields
A=(A))ses and Y=(¥:)ses. The image data to be
segmented is a realisation Y=y of Y and the desired
result is a realisation A=a of the field A. The joint
distribution of (A,Y) is defined by the prior
distribution Ps(a), which is assumed to be
stationary and Markovian, and by the posterior
distribution Py, ,(y/a) :

Puy(a,y)=Pu(a)Bia(yla) (1)
Firstly, we discuss the observed field Y. Let us
denote y? a random variable that is referred to as

the pure class j. Both the heterogeneity of pure
matter and the imaging noise are taken into account

in its probability density p(y?) . The intensity value

y of a mixel can then be represented by a weighted
sum of k pure tissues :

k N
y=2ajy§’ with Zajzl and a;j>0 (2)
= k=1

where a; is the proportion of the pure class j. In our

pOy) is
assumed to be Gaussian. From (2), it is obvious to

see that the observation y is a variable whose
fluctuations depend directly on the statistical

case, the distribution of each pure class

properties of the random variables y¥ (ie. noise
variance and tissue heterogeneity).
In the case of two pure tissues Qz{c1 ,cz}, the
intensity value of a mixel takes the following form:
y=ay{ +(1-a)y; 3)
In this linear fuzzy model, we take a€[0,1] , where
the values 0 and 1 correspond to the hard classes
(O:class 2 and 1: class 1), and Jo,1[ stands for the
fuzzy classes. Assume that the two pure classes are
independent of s, normally distributed. Denoting

N(ux,0?) the normal distribution of mean 4 and
variance o (k=1,2), the probability density
function of y is the convolution of p(yf) and
p(y?) with a weight a. It can be written as follows
for a given a:

Ja)= 1 : [y—(a/ll+(1—a)ﬂ2)]2} )
po/a) Vo Jaoir(l-aro? *P\ " 2la:07+(1—a)03]

p(yla) is also a Gaussian function. The parameters
Lo M, o5, o)’ of the pure classes define all
distributions of Y conditional on A. Let us now

consider the a priori model Pi(a) . For the hard class
¢, we have a;=1, a=0 V i#j.If the field A is

considered Markovian with respect to a

neighborhood V, in accordance with the
Hammersley-Clifford theorem [6], its distribution is
defined as a Gibbs distribution:

PlA=al=exp(~Un(@)) 5)

where U, stands for the energy function, defined on
cliques within V, and Z is the normalizing constant.
In the fuzzy case, the distribution of A is defined on
Qs=[0,1]. If we consider that %exp(—U r(a))is
the density of P4 with respect to the mixels, Uy has
the same shape of cliques as the function U,. Then,
it is possible to show exactly, as in the hard case,
that A is Markovian with respect to V [10]. Since a;
is a real number in the fuzzy case, it can be infinite,
however, in practice, an infinite value is not
realistic. Therefore, we have to discretize a.

Segmentation algorithm

As the probability of mixing more than two tissues
in a voxel is very low and the mixture of WM and
CSF is very poor in a brain data, we can consider
that there are three pure classes CSF, GM and WM,
and two mix-classes : CG (mixture of CSF and
GM), GW (mixture of GM and WM). The fuzzy
segmentation consists in finding the three pure
classes and the fuzzy membership values of the two
mixclasses. Since the intensities of the two
mixclasses do not overlap and each mixclass is
mixed of only two hard classes, the fuzzy models
associated to the two hard classes, described above,
can be used directly for each mixclass. We can
consider that there are two fuzzy fields to be found,
which are independent of each other.

Let us denote a the fuzzy field a=(a®,a®"),

ac[0,1]z, which can take the three pure classes and

fuzzy values relative to the mixclasses CG and GW.
The data energy term concerning Y is expressed as

Ui(y/a)=InP(y/a). From (4), it is obvious that
Ui(y/a)

(D)’(a):{uCSF’O%SF,/uWM90-‘/2&/M’;UGMao-cz?M} which are
unknown a priori.

The energy term corresponding to the a priori model
is considered in the hard and fuzzy cases. As
described in the above section, we have

P(a)=%e’uz(“), where Uz(a)=Un(a)+U(a) . As the

object is three-dimensional (3D), the system
neighborhood V is the spatial 18-connexity. Two
kinds of cliques are defined: "horizontal" neighbors,
"vertical" neighbors and “inferior-posterior”
neighbors belong to the first kind; the other cliques
such as "south-west" and "north-west" belong to the

is defined by a set of parameters:



second one. U, (a) is defined when both pixels are

hard:

U,@=| Y Bra-8a,.a)+ 2/32”(1—5(51‘,61,)} (©)
(s.1)eV, (s.1)eV,

where V; and V, denote the two kinds of cliques,

and 8(.) is the Kronecker delta function. U, (a)is

defined when one pixel or both pixels are fuzzy:

> B|(as —a:)|+< Y Bi|(as—ar)|

Us(ay =" sl 7
+ Y B (a—a)l+ Y B (as—ar)
(sr)evt (s1)eVe

The a priori model is then defined by a set of
parameters :

(D“(a):{ﬁlh’ﬁ%’ lfCG’ {m, lfcw’ﬁZfGW} (8)
Using the Bayes rule, the fuzzy segmentation
objective is in fact to search for asuch as :
a = argmax(P(a)P(y/a)). This maximization is

a

equivalent to ga=argmin(Ui(y/a)+U2(a)) .

In the unsupervised Markovian segmentation case,
we have to estimate the parameters used in the
models (i.e. B in P(a), means and variances of the

Gaussian distributions in P(y/a). The complexity

of the estimation problem is due to the absence of
the observation a. Since the number of classes is
known in our case, the initialization of parameters
@, can be obtained by a fit of the image histogram
with a mixture of different distributions. The
obtained parameters are very close to the optimal
ones. Therefore, the method described in [11] is
adapted in our parameter estimation.

Let us specify that the prior distribution P(a/@u)
depends on a parameter vector @ and the intensity

distribution P(y/a,®,) depends on the parameter
vector @y. We consider estimation procedures for
complete data and incomplete data separately. For
the complete data, the estimator of @y is chosen as

the empirical mean and variance. For the incomplete
data, the stochastic gradient method is used to

estimate @« . The parameter estimation procedure is
outlined below:
(a) Initialize the parameters P°=(Pq,Dy), iteration

n=0.
(b) Segment the image data with the current

parameter b, using ICM, denoted a.

(¢) Estimate ®,"" from the segmented image data.
(d) Generate a Markov field using a Gibbs Sampler

according to the a priori law P(a)<e " with the

current parameter value (fi)Z) , denoted o™ .

(e) Estimate (i)a"+1 using the stochastic gradient
algorithm.
(f)If ‘éuﬂ—én

where € is a threshold depending on the required
accuracy. Instead of using two Gibbs Samplers, the
segmentation result is used during the iterative
procedure. Normally, at the end of the algorithm,
the segmentation is also obtained at the same time.

>¢, n=n+1, and go back to step (b),

Validation and results

The method has been validated in two ways: (a) a
simulation study focused on a quantitative
assessment in noise free and stationary conditions;
(b) its application to real MRI data was qualitatively
validated by experts.

(a)Simulated data

The digital brain phantom, available on the site
BrainWeb [12], is used as a gold standard. The
simulated MRI image volumes with different noise
levels are also available in this site. Each volume
data consists of 181x217x181 isotropic voxels of
size 1x1x1mm’.
The segmentation results are evaluated by
measuring the absolute average error &
> fa, -]
= — ©
Card(S)

where af denotes the known tissue proportion at
voxel s in the phantom and a, the estimated
proportion in the segmented fuzzy volume. Card(S)
denotes the number of voxels s in the reference
volume S. The average error & can be directly
related to the false positives and the false negatives
errors, in the sense that a difference in proportions
for a given tissue is similar to a difference of partial
volumes.
According to the fuzzy degree of the phantom, the
step of the fuzzy discridization is set to 0.2 for the
phantom analysis. As a result, there are finally 11
classes to segment. In Table 1, the error rates of the
segmentation were calculated for the entire phantom
volume. It can be observed that the performance
decays less when the noise level increase. In
practical situation, the noise level corresponds
generally to 5%. It can be also observed from Table
1 that more errors are found in the gray matter than
in the other tissues. This is due to the fact that the
gray matter is involved in both GM/WM and
GM/CSF mixtures.




(b) Real MRI data
T;-weighted SPGR MRI data sets with acquisition
parameters (TE=7ms, TR=30ms, o=40°) were
acquired on a 1.5 Tesla Signa scanner. Each data set
consists of 256 x256x124 voxels with a resolution
of 1x1x1.2mm3. The acquisition orientation is axial.
The algorithm was applied to ten MRI datasets.
Consistent and stable results of the segmentation
algorithm were observed. An axial slice is used here
to illustrate the performance of the proposed
method. The proportions obtained for the three pure
tissues are shown in Figure 1. The voxel intensities
correspond to proportion degrees of each pure
tissue. Bright intensity represents high proportions.
Here, the sampling step of the fuzzy membership a
is 0.1. Because the intensities of the MRI images
change within an interval of less than 200 gray
levels, it is not reasonable to take the fuzzy
membership value smaller than 0.1. Figure 1 shows
that voxels in the center of the brain or along the
cortical gray-white matter boundary have, as
predicted, significant proportions of both respective
tissue types. It should be noted that the sub-cortical
locations (in the center of the brain), composed of
some internal structures, would be wrongly
classified if a hard segmentation were used, while
the fuzzy segmentation renders fine details in these
regions. As the mixture of WM/CSF is ignored in
our brain model, some errors occur along the
boundary of the ventricles. However, these
misclassified voxels are negligible compared to the
entire dataset.

Conclusion

We have described an unsupervised fuzzy
segmentation method, based on a mixture model and
a MRF model, which seems well adapted and
efficient for MRI image segmentation. Quantitative
results indicate that the estimated parameters lead to
a result as well as the one obtained using the optimal
set of parameters. When the real data are fuzzy,
such as MRI brain data, the use of the fuzzy
segmentation is always more effective than the use
of the hard one. Further quantitative validation on
the accuracy and stability of the method is
necessary, using realistic phantoms and a large
number of clinical scans.

Tissu noise noise noise
level 3% |level 5% |level 7%
White matter 4.70 5.97 9.30
Gray Matter 7.23 9.28 12.41
CSF 2.18 2.56 3.89

Table 1 Segmentation errors dealing with the phantom noised
with 3%, 5% and 7% levels.

Figure 5 Fuzzy segmentation results. The voxel intensities
correspond to proportion degrees of each pure tissue. One
original slice (a), and the proportions of the WM (b), GM (c)
and CSF (d) are shown respectively.
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