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ABSTRACT

The solution of elliptic partial differential equations arises in 3D
surface reconstruction and active contours. Most current approaches
are iterative including finite element methods (FEM) and finite dif-
ference methods (FDM). In this paper, we describe a fast spectral
method for solving elliptic equations over the unit sphere. A dou-
ble Fourier series expansion is applied to model convex or star-
shaped 3D surfaces. The Helmholtz equation governing a diffu-
sion on the unit sphere is solved by spectral methods using double
Fourier series as orthogonal basis functions. The optimization of
the regularization parameter, which controls the tradeoff between
denoising and matching high spatial frequencies, is studied for dif-
ferent 3D shapes and noise models. We show how the resultant
solution can be combined with active contour methods to speed
up 3D medical image segmentation. A number of examples and
simulation results are presented to illustrate the algorithm.

1. INTRODUCTION

The need to solve elliptic equations of the general form

r2u� �u = f (1)

arises in several computer vision problem, such as shape from
shading [1], surface reconstruction [2] and active contours [3].
These problems can be formulated in the framework of variational
principles and lead to solving Euler-Lagrange equations of elliptic
type as the necessary condition for a minimum. Although there
exist direct analytical methods for solving these equations on 2D
rectangular domain [4], current approaches that we are aware of
solve these equations defined over closed 3D surface by iterative
techniques [3]. In this paper, we apply spectral methods [5, 6] to
solve elliptic equations over the unit sphere and apply this to the
problems of surface reconstruction and 3D active contours.

A 3D surface is usually defined by a mappingx : 
! <3, i.e.
x(v; w) = (x1(v; w); x2(v; w); x3(v; w)), where
 is a 2D do-
main and(v; w) 2 
. In this paper, we will only consider closed
surfaces which are star-shaped. With the assumption that the ori-
gin has been aligned up with the object center, these surfaces can
be represented by a radial descriptorr(�; �) : S2 ! < defined
over the unit sphereS2 in <3. Throughout this paper, the follow-
ing notations are used:
I(x; y; z), 3D grey-level image;
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x(v; w), surface function in Cartesian coordinates;
u(�; �), admissible surface function in spherical coordinates;
f(�; �), segmentation data in surface reconstruction problem or
distance between the origin and the nearest edge point ofu(�; �)
in 3D active contour problem;
d(x; y; z), Euclidean distance from a point(x; y; z) on the 3D ac-
tive contour to its nearest edge point;
� and�, parameters controlling tradeoff.

2. PDE’S IN RECONSTRUCTION AND SEGMENTATION

There are many computer vision problems which can be formu-
lated as optimization via variational principles. These variational
principles lead to solving one or more elliptic PDE’s. Some of
these problems are: shape from shading, height from gradient,
surface reconstruction and optical flow. Below we discuss the for-
mulation of surface reconstruction and 3D active contours in the
context of variational principles.

2.1. Surface Reconstruction

The goal of surface reconstruction is to find a credible surface that
can smooth noisy surface sample data provided by a coarse seg-
mentation algorithm. Assuming the origin has been aligned with
an interior point of the object, we usef(�; �) to represent the seg-
mentation data specified on the unit sphere andu(�; �) to rep-
resent the admissible surface function which satisfy smoothness
constraint and data fidelity constraint. A common formulation of
this problem is to define an energy functionalE which is a sum of
the energy contributions from the smoothness constraint and the
data constraint,

E(u) =

Z
S2

Z(u)d
+ �

Z
S2

Y (u; f)d
; (2)

whereZ is a roughness measure which encapsulates the irregu-
larity of the surfaceu, Y measures the discrepancy between the
surfaceu and the segmentation dataf , and� is a regularization
parameter controlling the tradeoff between denoising and match-
ing high spatial frequencies in the segmentation data. The smooth-
ness term should penalize the gradient of the functionu to enforce
smoothness. For instance,Z can be defined asZ(u) = kruk2,
wherer is the gradient operator. A common definition of the data
fidelity metric isY (u; f) = (u � f)2. With these choices, the
energy functional takes the form:

E(u) =

Z
S2
kruk2d
 + �

Z
S2

(u� f)2d
 (3)



The final solution to the reconstruction problem should be a crit-
ical pointu = u� which minimizes the energy functionalE(u).
The solution must therefore satisfy the following Euler-Lagrange
equation on the unit sphere [7]:

r2u� �(u� f) = 0: (4)

This is a special case of the Helmholtz equation on the unit sphere.
The solution to this equation will be discussed in Section 3.

2.2. 3D Active Contours

In the last two decades, active contour methods have been de-
veloped to solve the image segmentation problem and the recon-
struction problem simultaneously. The approaches can be clas-
sified into parametric active contours and geometric active con-
tours. A typical 3D parametric active contour deforms under inter-
nal forces and external forces, ultimately taking the shape of the
object boundary which minimizes the contour’s associated energy
functionalE(x):

E(x) =

Z



[�krxk2 + �kr2
xk2]d
 +

Z



Pext(I;x)d
 (5)

wherex denotes the contour in Cartesian coordinates andI is the
3D image. The energy functionalE is composed of the internal
energy, the first integral term which is computed from the contour
itself, and the external energy, the second integral term which is
computed from both the contour and the image data. The force
generated by the internal energy discourages stretching and bend-
ing of the contour having the effect of regularization on the con-
tour. On the other hand, the force generated by the external energy
attracts the contour towards the boundary.

Increasing� increases the resistance to stretching force, so
that the contour tends to shrink toward a solution that reduces the
active contour curve length or surface area. On the other hand,
increasing� increases the resistance to tensile stress and bending.
In this paper,� is set to zero to allow second-order discontinuity
in the contour.

The external energy is usually defined to be a potential func-
tion which has a global minimum at the object boundary. Typi-
cal potential functions designed to deform the active contour are
P(1) = h1(rI), P(2) = h2(d), whered is defined in the Section
1, h1 andh2 are convex potential functions. Potential functions
of typeP(1) have the disadvantage that the resulting external force
has very small capture range because the value ofP(1) is near zero
in regions where the intensity is nearly homogeneous. Potential
functions of typeP(2) solve this problem by incorporating edge
points extracted by local edge detectors. The locations of edge
points are broadcasted to many of their neighbors. WhenPext is
designed to equald2, the energy functional becomes

E(x) =

Z



�krxk2d
 +

Z



d2d
 (6)

Let us replacex, the surface representation in cartesian coordi-
nates byu(�; �), the surface representation in spherical coordi-
nates and replace the distance potentiald2 by (u � f)2, where
f(�; �) denotes the distance between the origin and the nearest
edge point ofu(�; �). The equation (6) becomes

E(u) =

Z
S2

�kruk2d
+

Z
S2

(u� f)2d
 (7)

which is analogous to equation (3) both in expression and in phys-
ical interpretation. The Euler-Lagrange equation must have the
same form as (4). Other types of external potential functions may
generate Poisson type Euler-Lagrange equations, which can also
be solved by the spectral method described in Section 3.

In the case of surface reconstruction, where the elliptic equa-
tion only needs to be solved once, it is often possible to apply FEM
or FDM to obtain a solution in a reasonable amount of time. When
a 3D active contour is in evolution,f is updated in every iteration,
therefore the elliptic equation has to be solved many times before
the contour converges to the object boundary. In this case, the it-
erative method must be applied for each update which is often too
slow for practical applications. This was verified by Cohen, who
used finite element methods to solve the PDE in [3].

3. THE SPECTRAL METHOD

Spectral methods for solving PDE’s over a 2D rectangular domain
are well known for their faster rate of convergence and higher ac-
curacy as compared to iterative FEM and FDM methods. These
methods usually take advantage of symmetries by transforming the
equation into spectral domain and only requireO(N2 logN) oper-
ations for a 2D problem onN�N grid. It was Simchony who first
applied spectral method to solve Poisson equations in computer
vision problems [4]. Although similar methods for solving PDE
over unit sphere have been used in numerical weather prediction
and the study of ocean dynamics [5, 6], to the best of our knowl-
edge, they have not been used in computer vision. In the subse-
quent sections, we discuss the application of spectral methods to
solve elliptic equations 4 for surface reconstruction and evolving
3D active contours.

3.1. Double Fourier Series Expansion

If we move the term�f in the equation (4) to the right hand side
and define it as the force functionf in the Helmholtz equation (1),
(4) can be rewritten asr2u� �u = f , or more explicitly:

1

sin �

@

@�
(sin �

@u

@�
) +

1

sin2 �

@2u

@2�
= �u+ f (8)

where� 2 [0; �] is the polar angle and� 2 [0; 2�] is the azimuthal
angle in spherical coordinates. As in many problems with sphere
geometry [8], we expand the scalar functionu, and similarly for
f , with a Fourier series in longitude with a truncationM ,

u(�; �) =
MX

m=�M

um(�)eim�; (9)

whereum(�) = 1
K

PK�1
k=0 u(�; �k)e

�im�k , �k = 2�k=K and
K = 2M . Substituting this expansion into equation (8), we obtain
the ODE

1

sin �

d

d�
sin �

d

d�
um(�)�

m2

sin2 �
um(�) = �um(�) + fm(�)

(10)

The next key step is to approximate the functionum(�), and simi-
larly for fm(�), with truncated sine or cosine functions,

um(�) =

J�1X
n=0

un;m[(1� sm) cos n� + sm sinn�] (11)



wheresm = 0 for evenm andsm = 1 for oddm. This enables
us to reduce the equation (10) to an algebraic system of equations
in the Fourier space:

[(n� 1)(n� 2) + �]un�2;m � 2[(n2 + 2m2) + �]un;m

+[(n+ 1)(n+ 2) + �]un+2;m

= �fn�2;m + 2fn;m � fn+2;m (12)

For a givenm, the components of even and oddn are uncoupled.
Therefore the original equation (10) is composed of two indepen-
dent subsystems. We can write them in matrix form:

Du = Af (13)

whereu andf denote the coefficient vectors,D andA represent
tridiagonal matrices determined by (12). For example, the subsys-
tem for oddn looks like this:
0
BBBBB@

b1;m c1
a3 b3;m c3

. . .
. . .

. . .
aJ�3 bJ�3;m cJ�3

aJ�1 bJ�1;m

1
CCCCCA

0
BBBBB@

u1;m
u3;m

...
uJ�3;m
uJ�1;m

1
CCCCCA

=

0
BBBBB@

2 �1
�1 2 �1

. . .
. . .

. . .
�1 2 �1

�1 2

1
CCCCCA

0
BBBBB@

f1;m
f3;m

...
fJ�3;m
fJ�1;m

1
CCCCCA

The procedure to get the solutionu(�; �) to (8) is as follows:
First, we getfn;m, the spectral components off(�; �) by dou-
ble Fourier series expansion. Then the right hand side of (13) is
calculated to obtain the column vectorf1 = Af . Finally, the tridi-
agonal matrix equationDu = f1 is solved andu(�; �) is obtained
by inverse transform ofun;m. Notice that the Poisson equation
r2u = f is just a special case ofr2u � �u = f . Simply Set-
ting � = 0 in the above algorithm will give the solution to Pois-
son equation. Other simple elliptic equations, such as biharmonic
equations can also be solved by this spectral method.

3.2. Complexity Analysis

Let us consider an elliptic equation with a grid size ofN � N
on unit sphere. If FEM were used, there would be a total ofN2

variables with matrix sizeN2 � N2. A crude Gauss elimination
method will requireO(N6) operations and the Gauss-Siedel relax-
ation will requireO(N4) operations to converge. If the algorithms
can take advantage of the fact that the matrix is sparse, it may re-
duce the number of operations toO(N3). However the computa-
tional complexity of the spectral method described above is only
O(N2 logN).

4. EXPERIMENTAL RESULTS

We now present the results of applying the spectral method to solve
the elliptic equations involved in the problems of surface recon-
struction and 3D active contours.

4.1. Surface Reconstruction

In this problem, we apply the algorithm to some synthesized seg-
mentation data to show how to choose the regularization parame-
ter � for different noise levels and for different shapes. The object
center is assumed to be known or has been estimated in advance.

In the first experiment, we investigate the optimization of� for
different shapes. The reconstructions of a sphere and an ellipsoid
are compared to illustrate the role of�. The Gaussian segmentation
noise was introduced and the noise level in each sample direction
is the same. In Fig. 1 and Fig. 2,x-axis represents the value
of � andy-axis represents standard deviation of the noise in the
reconstructed surface. Fig. 1(a) shows that for a spherical shape
which only contains low spatial frequency,� should be as small as
possible in order to filter out segmentation noise, while Fig. 1(b)
shows that for an ellipsoidal shape which contains higher spatial
frequencies,� can be optimized to control the tradeoff between
denoising and matching high spatial frequencies.
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(a) Sphere
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(b) Ellipsoid

Fig. 1. Noise in reconstructed surface vs.� for different shapes

In the second experiment, the choice of� for different segmen-
tation noise levels was investigated. Different levels of Gaussian
noise were added to the ellipsoidal shape. Fig. 2 shows that�
should be smaller for lowSNR segmentation data than for high
SNR segmentation data, which is as expected.
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(a)� = 0:05
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(b) � = 0:60

Fig. 2. Noise in reconstructed surface vs.� for different noise
levels

Surface reconstructions were accomplished in one iteration by
the spectral method, while a single-grid relaxation algorithm may
need more than100 iterations.

4.2. 3D Active Contours

In this problem, the elliptic equations have to be solved in every
evolution iteration. The advantage of using spectral method here



is thus multiplied as compared to the surface reconstruction prob-
lem. We use double Fourier series to expand the radial descriptor
of the 3D contour. Seven slices of an X-ray CT image were used
to segment the liver. The set of edge maps for these CT slices is
the input to our 3D active contour method. One of the CT slices
is shown in Fig. 3(a) and its edge map is shown in Fig. 3(b). As
in the surface reconstruction problem, the center of liver was esti-
mated in advance. The contour was initialized as a sphere inside
the liver. In every iteration, the position of the nearest edge point
to a given point on the active contour was determined from the set
of edge maps. The elliptic equation is then solved to determine the
new position of the active contour. The role of� is inverse to the
role of �, so it was set to0:01 to keep the high spatial frequencies
contained in the shape of liver. Fig. 3(c) and Fig. 3(d) show the
contour’s position in that particular slice after one and three itera-
tions. In fact, the contour is very close to its convergent limit after
only three iterations. Due to the fact that double Fourier series
were truncated, the contour can not catch the sharp corner in the
image. This is illustrated in Fig. 3(d).

(a) a slice of CT image (b) Edge map

(c) iter = 1 (d) iter = 3

Fig. 3. Segmentation of liver in CT image by 3D active contours

5. CONCLUSIONS

In this paper, we have discussed the formulation of surface re-
construction and 3D active contours in the context of variational
principles. It is shown that all these problems lead to solve el-
liptic equations on the unit sphere. A spectral method using dou-
ble Fourier series as orthogonal basis functions has been applied
to solve the elliptic equations. Compared to the complexity of
O(N4) for iterative methods, the complexity ofO(N2 logN) for
spectral method is much lower. Some experimental results for sur-
face reconstruction and 3D active contours were presented to illus-
trate the algorithms. In the experiment of 3D active contours, the

edge map extracted by local edge detector is the only input to our
algorithm. To improve the segmentation result, we propose to in-
corporate the intensity information obtained from imageI into the
segmentation procedure as our future research. The optimization
of the regularization parameter� is also worth of further study.
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